Dr. Donald Halseth, Coordinator Department of Horticulture Cornell University Ithaca, New York 14853

2016 Potatoes USA-SNAC International Chip Variety Trials

Cooperators:

Mr. Brian Kirschenmann, Kirschenmann Farms, Inc., Bakersfield, CA
Dr. Lincoln Zotarelli, University of Florida, Hastings, FL
Dr. Jeff Stark, University of Idaho, Aberdeen, ID
Dr. Greg Porter, University of Maine, Orno, ME
Mr. Chris Long, Michigan State University, East Lansing, MI
Dr. Darrin Haagenson, USDA-ARS, East Grand Forks, MN
Mr. Jeremy Buchman & Jim Browning, Black Gold Farms, Charleston, MO
Dr. Craig Yencho, North Carolina State University, Raleigh, NC
Dr. Sagar Sathuvalli, Oregon State University, Hermiston, OR
Mr. Robert Leiby, PA CO-OP Potato Growers, Inc., Harrisburg, PA
Dr. Felix Navarro, University of Wisconsin, Hancock, WI

POTATOES USA – SNAC INTERNATIONAL

2016 Yield Trials Progress Report to Chip Committee - 1/4/2017

Dr. Donald E. Halseth - Coordinator Department of Horticulture Cornell University Ithaca, New York 14853

Introduction

The search for new and improved chipping potato varieties is an ongoing and challenging task. The annual national Potatoes USA – SNAC International (formerly USPB-SFA) Chip Variety Trials are designed to evaluate promising chip processing clones from the various US potato breeding programs. The eleven trial locations for the 2016 PUSA-SNAC chip variety trial research program were California, Florida, Idaho, Maine, Michigan, Missouri, North Carolina, North Dakota, Oregon, Pennsylvania, and Wisconsin. These sites provide a wide range of climates, soil types and cultural practices to help assess the strengths and weaknesses of new potato varieties. The typical growing season for chipping potatoes ranges from January through May for Southern locations, which provide out-of-field chip product, while Northern sites grow from May through September, with cold storage chipping of their production to begin in October and run through April or later.

Since the USPB-SFA chip trials began in 1985, there have been 119 advanced potato breeding lines and varieties (Table 6) evaluated and compared with potato chip industry standards. Forty-two of these lines have been named and released and twenty-eight are currently in national commercial seed production. The most recently released varieties are Hodag, Lamoka, Lelah, Manistee, Pinnacle, Sebec, Tundra and Waneta - with a total of 3,457 acres of US seed in 2016. These new varieties offer the chipping industry higher yield potential, longer storage life and more consistent chip quality.

The goal for the Potatoes USA – SNAC International chip trials is to identify superior new potato lines which will be well adapted for their production area and utilization market. The potato characteristics that the chip industry is looking for are high, stable yield, disease and pest resistance, stress tolerance, specific gravity (high dry matter), bright potato chip color, potatoes free from defects, and long-term cold storage capabilities. For Southern production an earlier variety to replace Atlantic is needed which does not have internal heat necrosis or soft rot problems. Northern production would benefit from advanced selections that offer acceptable chip quality from long-term cold storage temperatures below 50°F and do not have susceptibility to scab and other organisms.

Note: advanced storage studies on sugar levels and chip color from multiple temperatures and sample dates will be conducted on the 2016 PUSA-SNAC chip trials in ID, ME, MI, ND and WI and will be reported in a separate report which will complement the yield trial reports.

2016 Potatoes USA – SNAC International trial plans

Potato breeding lines with potential for chipping are entered into the Potatoes USA – SNAC trials for three growing seasons and then replaced with new entries. If an entry experiences problems early it may be dropped from the testing program before the 2^{nd} or 3^{rd} year of trials. On occasion an entry may perform very well for two seasons and will be not tested for a third year. If it is deemed by the chip committee that more data needs to be collected an entry may be tested for a 4^{th} year. All 11 chip trials have Snowden as a standard for yield and specific gravity, as well as for cold temperature storage chipping in northern locations. The low temperature-low sugar variety Lamoka was added as a long-term storage standard (to pair with Snowden) for the 7 northern trials. Atlantic is grown in the 4 southern trials as a standard for yield, specific gravity and field chipping. Fifteen entries evaluated in the 2016 PUSA-SNAC chip trials and their sources are listed below:

The following twelve entries were evaluated in all eleven states:

AF5040-8 University of Maine – Greg Porter
B2727-2 USDA-ARS – Beltsville, MD – Kathy Haynes
CO07070-10W Colorado State University – David Holm
MSR127-2 Michigan State University – David Douches
MSW485-2 Michigan State University – David Douches
NC0349-3 North Carolina State University – Craig Yencho
NDTX0981648CB-13W Texas A & M University – Creighton Miller
NY152 Cornell University – Walter De Jong
NY157 Cornell University – Walter De Jong
TX09396-1W Texas A & M University – Creighton Miller
W6822-3 University of Wisconsin – Jeff Endelman
W8822-1 University of Wisconsin – Jeff Endelman

The following entry was evaluated only in the four southern trials (CA, FL, MO, NC):

CO07070-13W Colorado State University – David Holm

The following two entries were evaluated only in the seven northern states (ID, ME, MI, MN/ND, OR/WA, PA and WI):

AF4648-2 University of Maine – Greg Porter NDA081453CAB-2C USDA-ARS – Aberdeen, ID - Rich Novy (not in ME)

Eleven state trial coordinators for 2016:

California	Brian Kirschenmann, Kirschenmann Farms, Inc., Bakersfield, CA
Florida	Lincoln Zotarelli, University of Florida, Hastings, FL
Idaho	Jeff Stark, University of Idaho, Aberdeen, ID
Maine	Greg Porter, University of Maine, Presque Isle, ME
Michigan	Chris Long, Michigan State University, East Lansing, MI
Missouri	Jeremy Buchman & Joseph Budke, Black Gold Farms, Charleston, MO
North Caro	lina Craig Yencho, NC State University, Raleigh, NC
North Dak	Darrin Haagenson, USDA Potato Research Worksite,
	East Grand Forks, MN
Oregon	Sagar Sathuvalli, Oregon State University, Hermiston, OR
Pennsylvar	nia Bob Leiby, PA CO-OP Potato Growers, Inc., Harrisburg, PA
Wisconsin	Felix Navarro, University of Wisconsin, Hancock, WI

2017 Potatoes USA – SNAC International trial plans

The following nine entries are scheduled for evaluation in all eleven states:

AC01144-1W Colorado State University – David Holm
AF5040-8 University of Maine – Greg Porter
B2727-2 USDA-ARS – Beltsville, MD – Kathy Haynes
MSR127-2 Michigan State University – David Douches
MSV358-3 Michigan State University – David Douches
MSW485-2 Michigan State University – David Douches
MSX540-4 Michigan State University – David Douches
NDTX0981648CB-13W Texas A & M University – Creighton Miller
NY152 Cornell University – Walter De Jong

The following two entries are scheduled for evaluation only in the four southern trials (CA, FL, MO, NC):

CO07070-13W Colorado State University – David Holm W9968-5 University of Wisconsin – Jeff Endelman

The following entry is scheduled for evaluation only in the six northern states (ID, MI, MN/ND, OR/WA, PA and WI) (will not be in ME):

NDA081453CAB-2C USDA-ARS - Aberdeen, ID - Rich Novy

POTATOES USA - SNAC INTERNATIONAL CHIP TRIALS - 2016 CULTURAL PRACTICE DATES AND GROWING DAYS

State	City	Planting Date	Vine Kill Date	Harvest Date	Days from Planting to Vine Kill	Days from Planting to Harvest
СА	Bakersfield	10-Feb-16	3-Jun-16	8-Jun-16	114	119
FL	Hastings	15-Feb-16		17-May-16		92
ID	Aberdeen	4-May-16	1-Sep-16	21-Sep-16	120	140
ME	Presque Isle	25-May-16	12-Sep-16	29-Sep-16	110	127
МІ	Howard City	20-May-16	31-Aug-16	13-Oct-16	103	146
МО	Charleston	14-Mar-16		7-Jul-16		115
NC	Columbia	1-Mar-16		20-Jun-16		111
ND	Hoople	18-May-16	2-Sep-16	27-Sep-16	107	132
OR/WA	Burbank, WA	2-May-16	18-Sep-16	17-Oct-16	139	168
ΡΑ	Chambersburg	11-May-16	13-Sep-16	27-Sep-16	125	139
WI	Hancock	6-May-16	12-Sep-16 (vk 12 & 19)	29-Sep-16	129	146

TABLE 1. 2016 POTATOES USA - SNAC CHIP TRIALS - TOTAL YIELD (cwt/acre)

			SOUT	HERN T	RIALS			NORTHERN TRIALS								entry
ENTRIES / STATES		СА	FL	МО	NC	avg.	ID	ME	МІ	ND	OR	РА	wı	avg.		avg.
ATLANTIC	4S	562	397	456	458	468	na	404	na	na	785	na	554	na		na
LAMOKA	7N	na	na	na	373	na	465	355	489	249	672	320	413	423		na
SNOWDEN	all	544	322	436	414	429	387	367	524	296	713	496	612	485		465
AF4648-2	7N	na	na	na	na	na	389	347	347	262	585	353	<mark>419</mark>	<mark>386</mark>		na
AF5040-8	all	538	363	344	420	416	412	332	<mark>376</mark>	226	495	320	412	<mark>368</mark>		<mark>385</mark>
B2727-2	all	<mark>499</mark>	374	364	288	<mark>381</mark>	337	<mark>301</mark>	352	179	570	361	<mark>362</mark>	352		362
CO07070-10W	all	<mark>512</mark>	299	299	350	365	328	257	468	148	565	314	<mark>384</mark>	352		357
CO07070-13W	4S	601	272	368	361	401	na	na	<mark>359</mark>	na	na	na	na	na		na
MSR127-2	all	559	383	357	292	<mark>398</mark>	476	338	600	275	531	449	438	444		427
MSW485-2	all	650	436	498	<mark>348</mark>	483	514	395	575	379	740	347	521	496		491
NC0349-3	all	538	353	388	421	425	344	330	472	<mark>229</mark>	724	432	539	439		434
NDA081453CAB-2C	6N	na	na	na	na	na	483	na	<mark>386</mark>	300	642	409	280	417		na
NDTX0981648CB-13W	all	622	<mark>304</mark>	433	376	434	425	<mark>298</mark>	<mark>359</mark>	286	912	370	445	442		439
NY152	all	541	374	459	425	450	497	408	664	344	731	377	595	517		492
NY157	all	460	343	401	377	<mark>395</mark>	414	369	560	276	621	382	481	443		426
TX09396-1W	all	477	374	374	352	<mark>394</mark>	<mark>359</mark>	319	437	247	629	411	435	405		401
W6822-3	all	557	352	435	436	445	391	333	295	273	734	386	503	416		427
W8822-1	all	540	408	442	378	442	394	392	583	283	640	424	547	466		457
state average		547	357	404	379	422	413	347	462	266	664	384	467	428		426

VERY LOW

LOW / BELOW AVERAGE

GOOD / ABOVE AVERAGE

VERY HIGH

TABLE 2. 2016 POTATOES USA - SNAC CHIP TRIALS - MARKETABLE YIELD (cwt/acre)

			SOUT	HERN T	RIALS			NORTHERN TRIALS								entry
ENTRIES / STATES		СА	FL	МО	NC	avg.	ID	ME	MI	ND	OR	PA	WI	avg.		avg.
ATLANTIC	4S	516	318	435	344	403	na	376	na	na	653	na	475	na		na
LAMOKA	7N	na	na	na	205	na	352	318	441	168	612	226	350	352		na
SNOWDEN	all	496	227	407	334	366	288	348	438	161	666	452	545	414		397
AF4648-2	7N	na	na	na	na	na	285	296	<mark>301</mark>	164	<mark>520</mark>	258	308	305		na
AF5040-8	all	488	260	<mark>313</mark>	327	347	366	297	303	147	450	207	340	<mark>301</mark>		<mark>318</mark>
B2727-2	all	456	305	305	182	312	<mark>266</mark>	248	<mark>304</mark>	98	551	324	286	297		<mark>302</mark>
CO07070-10W	all	437	169	243	244	273	226	219	368	41	501	216	303	268		270
CO07070-13W	4S	542	165	287	263	<mark>314</mark>	na	na	287	na	na	na	na	na		na
MSR127-2	all	504	310	288	169	<mark>318</mark>	320	306	543	144	483	401	384	369		350
MSW485-2	all	571	249	445	185	363	391	362	483	226	624	314	471	410		393
NC0349-3	all	493	294	369	341	374	<mark>262</mark>	286	420	156	671	324	448	367		369
NDA081453CAB-2C	6N	na	na	na	na	na	406	na	335	247	585	350	204	355		na
NDTX0981648CB-13W	all	556	200	388	276	355	331	265	287	132	849	286	379	361		359
NY152	all	470	289	413	324	374	376	360	578	199	540	296	497	407		395
NY157	all	358	241	366	269	309	313	338	504	175	547	252	408	362		343
TX09396-1W	all	<mark>435</mark>	305	356	251	337	285	285	407	195	541	367	<mark>319</mark>	343		341
W6822-3	all	483	<mark>226</mark>	384	360	363	280	296	198	166	665	253	407	324		338
W8822-1	all	447	296	402	295	360	299	363	515	158	545	313	493	384		375
state average		483	257	360	273	343	315	310	395	161	588	302	389	351		349

VERY LOW

LOW / BELOW AVERAGE

GOOD / ABOVE AVERAGE

VERY HIGH

TABLE 3. 2016 POTATOES USA - SNAC CHIP TRIALS - SPECIFIC GRAVITY

			SOUT	HERN T	RIALS			NORTHERN TRIALS								
ENTRIES / STATES		СА	FL	МО	NC	avg.	ID	ME	мі	ND	OR	РА	WI	avg.		avg.
ATLANTIC	4S	1.095	1.076	1.092	1.072	1.084	na	1.098	na	na	1.082	na	1.080	na	T	na
LAMOKA	7N	na	na	na	1.053	na	1.09	1.093	1.081	1.098	1.078	1.073	1.076	1.085		na
SNOWDEN	all	1.090	1.078	1.085	1.074	1.082	1.09	2 1.102	1.086	1.087	1.074	1.076	1.077	1.085		1.084
AF4648-2	7N	na	na	na	na	na	1.08	1.084	1.075	1.097	1.076	1.077	1.070	1.081		na
AF5040-8	all	1.093	1.080	1.093	1.074	1.085	1.09	2 1.096	1.080	1.096	1.081	1.090	1.087	1.089		1.087
B2727-2	all	1.094	1.077	1.093	1.072	1.084	1.09	1.099	1.079	1.092	1.079	1.100	1.081	1.089		1.087
CO07070-10W	all	1.098	1.077	1.092	1.079	1.087	1.10	5 1.111	1.088	1.094	1.088	1.090	1.089	1.095		1.092
CO07070-13W	4S	1.086	1.072	1.071	1.068	1.074	na	na	na	na	na	na	na	na		na
MSR127-2	all	1.094	1.079	1.089	1.068	1.083	<mark>1.08</mark>	<mark>3</mark> 1.094	1.082	1.089	1.071	1.078	1.080	1.083		1.083
MSW485-2	all	1.092	1.071	1.096	1.070	1.082	1.09	3 1.104	1.086	1.100	1.084	1.092	1.083	1.092		1.088
NC0349-3	all	1.100	1.073	1.077	1.068	1.080	1.08	1.093	1.072	1.079	1.075	1.076	1.064	1.078		1.079
NDA081453CAB-2C	6N	na	na	na	na	na	1.08	na	1.078	1.098	1.076	1.089	1.080	1.085		na
NDTX0981648CB-13W	all	1.089	1.070	1.079	1.072	1.078	<mark>1.08</mark>	3 1.101	1.084	1.092	1.074	1.083	1.077	1.086		1.083
NY152	all	1.095	1.075	1.079	1.070	1.080	1.09	6 1.092	1.076	1.095	1.077	1.071	1.072	1.083		1.082
NY157	all	1.084	1.072	1.082	1.067	1.076	1.08	1.090	1.079	1.087	1.073	1.090	1.074	1.083		1.080
TX09396-1W	all	1.107	1.076	1.092	1.070	1.086	1.09	1.098	1.080	1.093	1.078	na	1.079	1.087		1.086
W6822-3	all	1.090	1.083	1.088	1.076	1.084	1.09	1.104	1.082	1.095	1.084	1.088	1.081	1.090		1.088
W8822-1	all	1.087	1.080	1.092	1.079	1.085	1.09	1.102	1.084	1.095	1.076	1.096	1.081	1.089		1.088
state average		1.093	1.076	1.087	1.071	1.082	1.09	2 1.098	1.081	1.093	1.078	1.085	1.078	1.086		1.085

VERY LOW

LOW / BELOW AVERAGE

GOOD / ABOVE AVERAGE

VERY HIGH

TABLE 4. 2016 POTATOES USA - SNAC CHIP TRIALS - FIELD CHIP COLOR

		SOUTHERN TRIALS											NORTHERN TRIALS									
ENTRIES / STATES	СА	FL	FL	мо	мо	NC	NC	NC	NC	INST. avg.	MERIT avg.	ID	ID	мі	МІ	ND	OR	PA	PA	wi	INST. avg.	MERIT avg.
ATLANTIC	70.0	62.1	na	3	2	2	3	1	68.5	66.9	2.2	na	na	na	na	na	2.0	na	na	57.7	57.7	2.0
LAMOKA	na	na	na	na	na	3.5	3.5	2	66.9	66.9	3.0	<mark>66.7</mark>	2	55.5	2.5	67.0	1.3	<u>66.5</u>	4	65.1	64.2	2.5
SNOWDEN	68.0	64.6	na	2	2	2	2	1	69.2	67.3	1.8	67.4	2	53.6	3	61.0	1.8	70.6	4	64.3	63.4	2.7
AF4648-2	na	na	na	na	na	na	na	na	na	na	na	68.4	2	56.7	3	66.0	1.5	70.0	4	60.8	64.4	2.6
AF5040-8	68.0	64.2	4	3	3	2	3	1	67.9	66.7	2.7	70.7	1	54.2	3	65.0	1.5	68.6	4	61.1	63.9	2.4
B2727-2	68.0	63.7	1	2	2	2	2	1	69.5	67.1	1.7	<mark>66.7</mark>	3	54.9	3	64.0	1.5	67.5	4	63.1	63.2	2.9
CO07070-10W	68.0	64.1	4	2	2	3	3	1	67.0	66.4	2.5	67.6	2	52.7	3	62.0	1.5	69.3	3	61.5	62.6	2.4
CO07070-13W	68.0	62.1	4	2	2	3	3	1	71.3	67.1	2.5	na	na	na	na	na	na	na	na	na	na	na
MSR127-2	68.0	60.9	2	4	2	3	4	2	66.5	65.1	2.8	<mark>66.9</mark>	3	53.8	3.5	64.0	1.5	66.9	4	61.0	62.5	3.0
MSW485-2	68.0	61.9	2	3	2	3	4	1	66.8	65.6	2.5	<mark>65.0</mark>	2	50.6	2.5	64.0	1.8	68.1	2	61.3	61.8	2.1
NC0349-3	68.0	64.7	4	4	4	3	3.5	3	66.0	66.2	3.6	68.0	2	56.5	3.5	64.0	2.5	69.1	3	65.8	64.7	2.8
NDA081453CAB-2C	na	na	na	na	na	na	na	na	na	na	na	62.9	3	53.1	2.5	59.0	2.5	<u>66.7</u>	4	55.7	<mark>59.5</mark>	3.0
NDTX0981648CB-13W	68.0	65.2	3	1	2	2	3	1	65.2	66.1	2.0	68.7	2	53.1	3	57.0	1.8	69.2	2	<mark>59.3</mark>	61.5	2.2
NY152	70.0	62.4	3	1	4	3.5	3	1	69.3	67.2	2.6	69.9	1	57.2	3	71.0	1.3	68.1	4	64.8	66.2	2.3
NY157	67.0	63.8	4	1	2	3	3	1	68.1	66.3	2.3	68.5	2	56.5	2.5	62.0	1.3	70.0	4	61.0	63.6	2.5
TX09396-1W	68.0	62.4	3	1	3	2	3	1	70.1	66.8	2.2	68.3	2	na	4	64.0	2.2	na	na	<mark>59.0</mark>	63.8	2.7
W6822-3	68.0	62.0	4	1	2	2	3	1	69.0	66.3	2.2	<mark>66.4</mark>	2	53.7	2	65.0	1.2	<u>66.9</u>	4	64.9	63.4	2.3
W8822-1	70.0	61.2	3	1	2	2	3.5	1	65.6	65.6	2.1	68.4	2	53.1	3.5	67.0	1.7	65.1	4	61.2	63.0	2.8
state average	68.3	63.0	3.2	2.1	2.4	2.6	3.1	1.3	67.9	66.5	2.7	67.5	2.1	54.3	3.0	63.9	1.7	68.2	3.6	61.6	62.9	2.5

VERY LOW

GOOD / ABOVE AVERAGE

VERY GOOD

TABLE 5. 2016 POTATOES USA - SNAC CHIP TRIALS HOLLOW HEART (%)

		SC	UTHEF	RN TRIA	LS	NORTHERN TRIALS								
ENTRIES / STATES		СА	FL	MO	NC	ID	ME	MI	ND	OR	ΡΑ	wi		
ATLANTIC	4S	na	1	5	18	na	12.1	na	na	3	na	4.0		
LAMOKA	7N	na	na	na	0	0.3	0	0	2.3	0	0	2.1		
SNOWDEN	all	na	0	0	0	0	3.4	7	1.1	0	0	3.6		
AF4648-2	7N	na	na	na	na	0	2	0	2.5	0	0	2.7		
AF5040-8	all	na	0	0	0	0	0	0	0	0	0	3.4		
B2727-2	all	na	0	5	2	0	2.2	3	0	0	0	3.0		
CO07070-10W	all	na	0	0	0	0	2.1	0	0	0	0	3.2		
CO07070-13W	4S	na	0	0	0	na	na	na	na	na	na	na		
MSR127-2	all	na	0	2.5	0	0	0	0	0	0	0	3.3		
MSW485-2	all	na	0	0	18	0	7.3	7	0	7	0	3.5		
NC0349-3	all	na	2	70	56	2.8	78.3	60	37.8	10	1	6.8		
NDA081453CAB-2C	6N	na	na	na	na	0.8	na	0	0	0	0	2.8		
NDTX0981648CB-13W	all	na	1	5	0	0	7.9	0	0	0	0	3.0		
NY152	all	na	0	20	0	0.5	32	0	1.5	0	0	2.8		
NY157	all	na	1	0	2	0	2.4	0	2.5	0	0	3.1		
TX09396-1W	all	na	1	12.5	0	0	9.4	7	0	0	1	2.5		
W6822-3	all	na	0	0	0	0	7.4	3	0	0	0	2.8		
W8822-1	all	na	0	0	0	0	2.2	0	0	0	0	3.0		
state average		na	0.4	8.0	6.0	0.3	10.5	5.4	3.0	1.2	0.1	3.3		

Table 6. USPB-SFA Chip Trial Entry Summary: 1985 - 2016

Atlantia (4005 0040)	Crowden (1000 0010) and Lamaka (2015 0010)	
	Snowden (1988-2016) and Lamoka (2015-2016) i	
WNC672-2, 1985-1987	NY102 (Monticello), 1994-1995	AF2291-10, 2008-2010
WNC521-12, 1985-1986	NY103 (Eva), 1995-1997	CO97043-14W. 2008-2010
W879, 1985-1986	BCO894-2, 1995-1997	CO97065-7W, 2008-2010
W833, 1985	ATX85404-8, 1996-1998	NY138 (Waneta), 2008-2010
TXA17-1, 1985-1986	AF1433-4, 1996-1998	NY139 (Lamoka), 2008-2010
A70369-2, 1985-1986	ND2676-10 (Dakota Pearl), 1997-1999	W2717-5 (Lelah), 2008-2010
ND860-2, 1985-1986	B0564-8 (Harley Blackwell), 1997-1999	MSJ126-9Y (McBride) , 2009-2011
G670-11, 1985	B0564-9, 1997-1999	W2310-3 (Tundra), 2008,2010-2011
BR7093-24 (Gemchip), 1986-1988	NY115, 1997-1999	W2978-3, 2010-2012
W848 (Niska), 1986-1987	W1313, 1999	W5015-12 (Pinnacle), 2010-2012 (7N)
NY71 (Kanona), 1986-1988	NY112 (Marcy), 1998-2000	ND8331Cb-2, 2011
NY81 (Steuben), 1986-1988	AF1668-60, 1998-2000	AF0338-17 (Sebec), 2011-2013 (4S)
NY72 (Allegany), 1987-1989	MSNT-1, 1998-2000	CO00197-3W, 2011-2013
AF236-1 (Somerse t), 1987-1989	MSA091-1 (Liberator), 1999-2001	MSL292-A (Manistee), 2010-2013
MS700-70, 1987-1989	B0766-3, 2000-2002	MSQ086-3, 2010-2013 (4S)
AC80545-1 (Chipeta), 1987-1989	AF1775-2, 2000-2002	MSR061-1, 2011-2013 (7Ń)
LA01-38 (LaBelle), 1988-1990	W1431, 2000-2002	NY140, 2011-2013
MS716-15, 1988-1990	NY120, 2000-2002	NY148, 2011-2013
MS700-83 (Spartan Pearl), 1988-1990	AF1424-7, 2001-2003	W4980-1. 2011-2013
W855 (Snowden), 1988-1990	MSG227-2, 2001-2003	W6483-5, 2012-2013
Saginaw Gold, 1988-1990	W1355-1 (White Pearl), 2001-2003	A01143-3C, 2012-2014 (4S+6N)
AF875-16 (Mainechip), 1989-1991	NDTX4930-5W, 2001-2003	AF4157-6, 2012-2014
D195-24, 1989	ND2470-27 (Dakota Crisp), 1999, 2003-2004	CO02321-4W, 2012-2014
ND2008-2, 1990	A91790-13, 2002-2004	MSL007-B, 2012-2014
Coastal Chip, 1990	MSF099-3, 2002-2004	W5955-1 (Hodag), 2012-2014
CS7232-4, 1990-1992	B1240-1, 2004	A00188-3C, 2013-2015
Andover , 1991-1993	W1773-7, 2004	AC01151-5W, 2013-2015
Pike , 1991-1993	ND5822C-7 (Dakota Diamond), 2003-2005	CO03243-3W, 2013-2015
NY87 (Reba), 1991	W1201 (Megachip), 2003-2005	W6609-3, 2013-2014
W887, 1991-1993	AF2211-9, 2004-2006	CO02024-9W, 2014-2015
W870, 1991-1993	MSJ461-1, 2004-2006	MSK061-4, 2014-2015 (4S)
A80559-2, 1991-1993	NY132, 2004-2006	AC03433-1W, 2015
NDA2031-2, 1992-1994	MSJ316-A, 2005-2007	AF4648-2, 2015-2016 (7N)
Suncrisp, 1992-1994	W2133-1 (Nicolet), 2005-2007	CO07070-10W, 2016
B0178-34, 1992-1994	Beacon Chipper, 2006-2008	NC0349-3, 2016
NDO1496-1 (Ivory Crisp), 1993-1995	CO95051-7W, 2006-2008	NY157, 2016
NY95, 1993	MSJ147-1, 2006-2008	TX09396-1W, 2016
AF875-15, 1994-1996	W2324-1 (Accumulator), 2006-2008 (2009 4S)	W6822-3 , 2015-2016
ND2417-6 (NorValley), 1994-1996	CO96141-4W, 2007-2009	
		W8822-1, 2015-2016
ND2471-8, 1994-1996	MSJ036-A (Kalkaska), 2008-2009	

AF4648-2

PROGRAM:	UNIVERSITY OF N	1AINE - GREG PORTER						
PEDIGREE:	NY132 X LIBERA	TOR						
USE:	Chips from 50F, d	does not chip well from cold storage						
MATURITY:	MIDSEASON							
TRIALS:	7 northern all 11 states	Year: 2016 Year: 2015						
TOTAL Yield (7N-2016): TOTAL Yield (4S-2015): TOTAL Yield (7N-2015):	386 cwt/a 358 cwt/a 387 cwt/a	80% of Snowden's total yield of 485 cwt/a 87% of Snowden's total yield of 410 cwt/a 73% of Snowden's total yield of 528 cwt/a						
MARKETABLE Yield (7N-2016): MARKETABLE Yield (4S-2015): MARKETABLE Yield (7N-2015):	305 cwt/a 292 cwt/a 322 cwt/a	74% of Snowden's marketable yield of 414 cwt/a 83% of Snowden's marketable yield of 352 cwt/a 71% of Snowden's marketable yield of 452 cwt/a						
SPECIFIC GRAVITY (7N-2016): SPECIFIC GRAVITY (4S-2015): SPECIFIC GRAVITY (7N-2015):	1.081 1.075 1.087	4 units below Snowden's specific gravity of 1.085 1 unit below Snowden's specific gravity of 1.076 equal to Snowden's specific gravity of 1.087						

SUMMARY: Low total and marketable yields (71% to 87% of Snowden).
Below trial averages for specific gravity (0.004 below Snowden).
Field chip color similar to Atlantic and Snowden, does not chip well from storage.
Larger tuber size, lower tuber set, hence higher percent ovesize.
Good bruise resistance, but relatively high skinning susceptibility.
Internal brown spot - WI-2016.
Long tuber dormancy.
Vascular discoloration in storage (MI) associated with immature tubers.
Finished trials with 2nd year in 2016.

AF5040-8

PROGRAM:	UNIVERSITY OF M	IAINE - GREG PORTER						
PEDIGREE:	AF2376-5 X LAM	ОКА						
USE:	Chips from field a	and storage						
MATURITY:	Mid-season to me	edium-early						
TRIALS:	all 11 states	Year: 2016						
TOTAL Yield (4S-2016): TOTAL Yield (7N-2016):	416 cwt/a 368 cwt/a	97% of Snowden's total yield of 429 cwt/a 76% of Snowden's total yield of 485 cwt/a						
MARKETABLE Yield (4S-2016): MARKETABLE Yield (7N-2016):	347 cwt/a 301 cwt/a	95% of Snowden's marketable yield of 366 cwt/a 73% of Snowden's marketable yield of 414 cwt/a						
SPECIFIC GRAVITY (4S-2016): SPECIFIC GRAVITY (7N-2016):	1.085 1.089	3 units above Snowden's specific gravity of 1.082 4 units above Snowden's specific gravity of 1.085						

SUMMARY: Round to oblong tubers.
Below trial averages for yield, with better performance in southern locations.
High specific gravity, above Atlantic and Snowden.
A range of chip color from field, breeder data indicates good storage processing.
No hollow heart in all but one trial location (3.4% in WI).
Moderately susceptible to common scab.
Good blackspot bruise resistance.
Moderately susceptible to shatter bruise.
Resistant to Ro1 of Golden Nematode.
Appears better suited to southern production with good gravity, good internal quality, and good out-of-field chip color.
Planted in all 11 state trials for 2nd year in 2017.

B2727-2

PROGRAM:	USDA-ARS, Beltsv	ille, MD - Kathy Haynes						
PEDIGREE:	B0766-3 X B2135	5-163						
USE:	Good out-of-field	d chip color						
MATURITY:	Medium vine mat	curity						
TRIALS:	all 11 states	Year: 2016						
TOTAL Yield (4S-2016): TOTAL Yield (7N-2016):	381 cwt/a 352 cwt/a	89% of Snowden's total yield of 429 cwt/a 73% of Snowden's total yield of 485 cwt/a						
MARKETABLE Yield (4S-2016): MARKETABLE Yield (7N-2016):	312 cwt/a 297 cwt/a	85% of Snowden's marketable yield of 366 cwt/a 72% of Snowden's marketable yield of 414 cwt/a						
SPECIFIC GRAVITY (4S-2016): SPECIFIC GRAVITY (7N-2016):	1.084 1.089	2 units above Snowden's specific gravity of 1.082 4 units above Snowden's specific gravity of 1.085						

SUMMARY: Low or lowest total and marketable yields in both southern and northern trials. Very good specific gravity, above trial averages, ~ 0.003 above Snowden. Very good out-of-field chip scores.
Scab susceptibility similar to Snowden, very bad pitted scab in ME trial. Small size profile.
Low levels of hollow heart, 0% to 5%. Planted in all 11 state trials for 2nd year in 2017.

CO07070-10W

PROGRAM:	COLORADO STATE UNIVERSITY - DAVID HOLM		
PEDIGREE:	B0766-3T X CO0	B0766-3T X CO00188-4W	
USE:	Chips from 50F, reconditions from 40F		
MATURITY:	MEDIUM - MIDSEASON		
TRIALS:	all 11 states	Year: 2016	
TOTAL Yield (4S-2016): TOTAL Yield (7N-2016):	365 cwt/a 352 cwt/a	85% of Snowden's total yield of 429 cwt/a 73% of Snowden's total yield of 485 cwt/a	
MARKETABLE Yield (4S-2016): MARKETABLE Yield (7N-2016):	273 cwt/a 268 cwt/a	75% of Snowden's marketable yield of 366 cwt/a 65% of Snowden's marketable yield of 414 cwt/a	
SPECIFIC GRAVITY (4S-2016): SPECIFIC GRAVITY (7N-2016):	1.087 1.095	5 units above Snowden's specific gravity of 1.082 10 units above Snowden's specific gravity of 1.085	

SUMMARY: In 6 states had the lowest total and marketable yield, while in the rest of the states had below average if not very low yield. Chips from 50F, reconditions after storage at 40F. Medium maturity. Highest specific gravity, both southern and northern trials. Variable out-of-field chip scores. No hollow heart in 9 of 11 trials. Dropped after 2016 trials due to relatively low yield at many locations.

CO07070-13W

PROGRAM:	COLORADO STATE UNIVERSITY - DAVID HOLM	
PEDIGREE:	B0776-3T X CO00188-4W	
USE:	Potential to recondition out of 40F	
MATURITY:	EARLY	
TRIALS:	4 south	Year: 2016
TOTAL Yield (4S):	401 cwt/a	93% of Snowden's total yield at 429 cwt/a
MARKETABLE Yield (4S):	314 cwt/a	86% of Snowden's marketable yield at 366 cwt/a
SPECIFIC GRAVITY (4S):	1.074	8 units below Snowden's specific gravity of 1.082

SUMMARY: Early maturity.
Good yield in CA, the other 3 southern trials were low.
Attractive round tubers.
Specific gravity was low for CA, and lowest for the other 3 southern states.
Variable out-of-field chip scores, generally acceptable.
Potential to recondition out of 40.
No hollow heart in the four southern trials.
Common scab tolerant.
Planted in the 4 southern state trials for 2nd year in 2017.

MSR127-2

PROGRAM:	MICHIGAN STATE UNIVERITY - DAVID DOUCHES	
PEDIGREE:	MSJ167-1 X MSG227-2	
USE:	Long-term chip-processing quality with resistance to common scab	
MATURITY:	FULL- SEASON	
TRIALS:	all 11 states	Year: 2016
TOTAL Yield (4S-2016): TOTAL Yield (7N-2016):	398 cwt/a 444 cwt/a	93% of Snowden's total yield of 429 cwt/a 92% of Snowden's total yield of 485 cwt/a
MARKETABLE Yield (4S-2016): MARKETABLE Yield (7N-2016):	318 cwt/a 369 cwt/a	87% of Snowden's marketable yield of 366 cwt/a 89% of Snowden's marketable yield of 414 cwt/a
SPECIFIC GRAVITY (4S-2016): SPECIFIC GRAVITY (7N-2016):	1.083 1.083	1 unit above Snowden's specific gravity of 1.082 2 units below Snowden's specific gravity of 1.085

SUMMARY: Yields variable, below trial averages (87% to 93% of Snowden).
Specific gravity near trial averages and close to Snowden.
Field chip scores below trial averages.
Chips from short to mid-term storage.
No hollow heart in 10 of 11 trials.
Scab resistance similar to Pike.
In MI has significantly higher yield than Pike.
Tubers round, lightly netted, tan colored skin, a creamy-white flesh.
Size profile very uniform, does not go oversize or undersize much.
Medium tuber dormancy comparable to Atlantic.
Planted in all 11 state trials for 2nd year in 2017.

MSW485-2

PROGRAM:	MICHIGAN STATE UNIVERITY - DAVID DOUCHES		
PEDIGREE:	MSQ070-1 X MS	MSQ070-1 X MSR156-7	
USE:	Excellent chipping from field and long-term storage with resistance to late blight and stronger tolerance to common scab.		
MATURITY:	Mid-Season		
TRIALS:	all 11 states	Year: 2016	
TOTAL Yield (4S-2016): TOTAL Yield (7N-2016):	483 cwt/a 496 cwt/a	113% of Snowden's total yield of 429 cwt/a 102% of Snowden's total yield of 485 cwt/a	
MARKETABLE Yield (4S-2016): MARKETABLE Yield (7N-2016):	363 cwt/a 410 cwt/a	99% of Snowden's marketable yield of 366 cwt/a 99% of Snowden's marketable yield of 414 cwt/a	
SPECIFIC GRAVITY (4S-2016): SPECIFIC GRAVITY (7N-2016):	1.082 1.092	equal to Snowden's specific gravity of 1.082 7 units above Snowden's specific gravity of 1.085	

SUMMARY: One of 2 best yielders (NY152) in 2016 trials (99% to 113% of Snowden).
Specific gravity ~ trial averages in South, but very high in northern trials.
Field chip scores near trial averages.
Tubers are smooth, round, lightly netted, tan skin and white flesh.
Hollow heart in 4 trials (19% NC, 7% in ME, MI and OR).
Some elevated percentage of raw internal defects.
Planted in all 11 state trials for 2nd year in 2017.

NC0349-3

PROGRAM:	NORTH CAROLINA STATE UNIVERSITY - CRAIG YENCHO	
PEDIGREE:	SNOWDEN X B0564-9	
USE:	Out-of-field chipper.	
MATURITY:	Mid-season	
TRIALS:	all 11 states	Year: 2016
TOTAL Yield (4S-2016): TOTAL Yield (7N-2016):	425 cwt/a 439 cwt/a	99% of Snowden's total yield of 429 cwt/a 91% of Snowden's total yield of 485 cwt/a
MARKETABLE Yield (4S-2016): MARKETABLE Yield (7N-2016):	374 cwt/a 367 cwt/a	102% of Snowden's marketable yield of 366 cwt/a 89% of Snowden's marketable yield of 414 cwt/a
SPECIFIC GRAVITY (4S-2016): SPECIFIC GRAVITY (7N-2016):	1.080 1.078	2 units below Snowden's specific gravity of 1.082 7 units below Snowden's specific gravity of 1.085

SUMMARY: Total yield near trial averages, marketable yield above trial averages.
 Specific gravity very high in CA, low or lowest in rest of states.
 Mid-season maturity - slightly later than Atlantic.
 Mixed field chip scores, near trial averages.
 Excessive hollow heart (1% to 78%) across all states.
 Dropped from trials after 1st year in 2016 due to excessive hollow heart.

NDA081453CAB-2C

PROGRAM:	USDA-ARS, ABERDEEN, ID - RICH NOVY	
PEDIGREE:	DAKOTA DIAMOND X ND039173CAB-22	
USE:	Chips directly from field and from mid-term storage.	
MATURITY:	Mid-Season	
TRIALS:	6 NORTH	Year: 2016
TOTAL Yield (6N):	417 cwt/a	83% of Snowden's total yield at 505 cwt/a
MARKETABLE Yield (6N):	355 cwt/a	84% of Snowden's marketable yield at 425 cwt/a
SPECIFIC GRAVITY (6N):	1.085	3 units above Snowden's specific gravity of 1.082

SUMMARY: Yield equals trial averages.
Highest marketable yield for ID and ND, while lowest for WI.
Specific gravity equals trial averages, 3 units above Snowden.
Field chip score below trial average.
Very little hollow heart (> 1% in one trial, ID).
Lowest incidence of black spot bruise (MI trial).
Low common scab incidence.
Planted in 6 northern trials for 2nd year in 2017.

NDTX0981648CB-13W

PROGRAM:	TEXAS A & M - CREIGHTON MILLER	
PEDIGREE:	ND8456-1 X ND7377CB-1	
USE:	Chip from field	
MATURITY:	Late	
TRIALS:	all 11 states	Year: 2016
TOTAL Yield (4S-2016): TOTAL Yield (7N-2016):	434 cwt/a 442 cwt/a	101% of Snowden's total yield of 429 cwt/a 91% of Snowden's total yield of 485 cwt/a
MARKETABLE Yield (4S-2016): MARKETABLE Yield (7N-2016):	355 cwt/a 361 cwt/a	97% of Snowden's marketable yield of 366 cwt/a 87% of Snowden's marketable yield of 414 cwt/a
SPECIFIC GRAVITY (4S-2016): SPECIFIC GRAVITY (7N-2016):	1.078 1.086	4 units below Snowden's specific gravity of 1.082 1 unit below Snowden's specific gravity of 1.085

SUMMARY: Yield variable but above 4S and 7N trial averages, was highest yielder in OR.
Specific gravity below 4S trial average, with lowest gravity for FL.
Specific gravity at 7N trial average and only 1 unit below Snowden's average.
Field chip color variable, but near trial averages.
Hollow heart in FL (1%), MO (5%) and ME (8%), but 0% in the other 8 trials.
Planted in all 11 state trials for 2nd year in 2017.

NY152

PROGRAM:	CORNELL UNIVERSITY - WALTER DE JONG		
PEDIGREE:	B38-14 X MARCY	B38-14 X MARCY	
USE:	long term storage	long term storage and chipping from 40F to 42F	
MATURITY:	Medium-Late		
TRIALS:	all 11 states	Years: 2015 and 2016	
TOTAL Yield (4S-2016): TOTAL Yield (7N-2016): TOTAL Yield (4S-2015): TOTAL Yield (7N-2015): MARKETABLE Yield (4S-2016): MARKETABLE Yield (7N-2016): MARKETABLE Yield (4S-2015):	 450 cwt/a 517 cwt/a 456 cwt/a 531 cwt/a 374 cwt/a 407 cwt/a 370 cwt/a 442 cwt/a 	105% of Snowden's total yield of 429 cwt/a 107% of Snowden's total yield of 485 cwt/a 111% of Snowden's total yield of 410 cwt/a 101% of Snowden's total yield of 528 cwt/a 102% of Snowden's marketable yield of 366 cwt/a 98% of Snowden's marketable yield of 414 cwt/a 105% of Snowden's marketable yield of 352 cwt/a 98% of Snowden's marketable yield of 452 cwt/a	
SPECIFIC GRAVITY (4S-2016): SPECIFIC GRAVITY (7N-2016): SPECIFIC GRAVITY (4S-2015): SPECIFIC GRAVITY (7N-2015):	1.080 1.083 1.070 1.083	2 units below Snowden's specific gravity of 1.082 2 units below Snowden's specific gravity of 1.085 6 units below Snowden's specific gravity of 1.076 4 units below Snowden's specific gravity of 1.087	

SUMMARY: One of the 2 best yielders (MSW485-2) in 2016 trials.

Yield equal to Atlantic and usually 5% to 15% higher, similar comparison to Snowden.
Specific gravity averages 0.008 less than Atlantic, 0.004 less than Snowden.
Moderate to good resistance to common scab.
Low level of external defects, but varying levels of hollow heart a concern.
Tuber dormancy about 4 weeks longer than Atlantic.
Medium-Late maturity.
High tuber set, hence higher % undersize, resulting in a very desirable size profile.
Low bruise susceptibility.
Has marker suggesting PVY resistance (but has not been tested directly).
Susceptible to race Ro1 of the golden nematode.
Planted in all 11 state trials for 3rd year in 2017.

NY157

PROGRAM:	CORNELL UNIVERSITY - WALTER DE JONG	
PEDIGREE:	WHITE PEARL X NY115	
USE:	Chip from 44F	
MATURITY:	MID-SEASON	
TRIALS:	all 11 states	Year: 2016
TOTAL Yield (4S-2016): TOTAL Yield (7N-2016):	395 cwt/a 443 cwt/a	92% of Snowden's total yield of 429 cwt/a 91% of Snowden's total yield of 485 cwt/a
MARKETABLE Yield (4S-2016): MARKETABLE Yield (7N-2016):	309 cwt/a 362 cwt/a	84% of Snowden's marketable yield of 366 cwt/a 87% of Snowden's marketable yield of 414 cwt/a
SPECIFIC GRAVITY (4S-2016): SPECIFIC GRAVITY (7N-2016):	1.076 1.083	6 units below Snowden's specific gravity of 1.082 2 units below Snowden's specific gravity of 1.085

SUMMARY: Mid-season maturity.

Total and marketable yields below 4S trial averages and~ equal to 7N trial averages. Chips directly from 44F equal to or better than Snowden. Low level of defects, low % of hollow heart in 5 trials. Specific gravity ~ 0.006 less than Atlantic, 0.002 to 0.006 less than Snowden.

Moderate resistance to common scab.

Tuber dormancy ~ Atlantic.

Resistant to race Ro1 of the golden nematode.

Statter bruise in MI trial.

Dropped after 1st year of trials in 2016 due to marginal yield.

TX09396-1W

PROGRAM:	TEXAS A & M - CREIGHTON MILLER	
PEDIGREE:	ATLANTIC X NY139	
USE:	Chip from field	
MATURITY:	Late	
TRIALS:	all 11 states	Year: 2016
TOTAL Yield (4S-2016): TOTAL Yield (7N-2016):	394 cwt/a 405 cwt/a	92% of Snowden's total yield of 429 cwt/a 84% of Snowden's total yield of 485 cwt/a
MARKETABLE Yield (4S-2016): MARKETABLE Yield (7N-2016):	337 cwt/a 343 cwt/a	92% of Snowden's marketable yield of 366 cwt/a 83% of Snowden's marketable yield of 414 cwt/a
SPECIFIC GRAVITY (4S-2016): SPECIFIC GRAVITY (7N-2016):	1.086 1.087	4 units above Snowden's specific gravity of 1.082 2 units above Snowden's specific gravity of 1.085

SUMMARY: Total and marketable yield below 4S and 7N trial averages.
 Good specific gravity, 0.002 to 0.004 above Snowden.
 Out-of-field chip color near trial averages.
 Large tubers, nice shape.
 Hollow heart found in 5 of 11 trials (12.5% MO, 9.4% ME).
 Discontinued after 1 year of trials in 2016 due to marginal yield and internal defects.

W6822-3

PROGRAM:	UNIVERSITY OF WISCONSIN - JEFF ENDELMAN		
PEDIGREE:	WHITE PEARL X	WHITE PEARL X DAKOTA PEARL	
USE:	Chip from field an	Chip from field and long-term cold storage	
MATURITY:	Medium-Late	Medium-Late	
TRIALS:	all 11 states	Years: 2015 and 2016	
TOTAL Yield (4S-2016): TOTAL Yield (7N-2016): TOTAL Yield (4S-2015): TOTAL Yield (7N-2015): MARKETABLE Yield (4S-2016): MARKETABLE Yield (7N-2016):	 445 cwt/a 416 cwt/a 410 cwt/a 423 cwt/a 363 cwt/a 324 cwt/a 	104% of Snowden's total yield of 429 cwt/a 86% of Snowden's total yield of 485 cwt/a 99% of Snowden's total yield of 413 cwt/a 96% of Snowden's total yield of 442 cwt/a 99% of Snowden's marketable yield of 366 cwt/a 78% of Snowden's marketable yield of 414 cwt/a	
MARKETABLE Yield (4S-2015):	327 cwt/a	91% of Snowden's marketable yield of 360 cwt/a	
MARKETABLE Yield (7N-2015):	336 cwt/a	89% of Snowden's marketable yield of 377 cwt/a	
SPECIFIC GRAVITY (4S-2016): SPECIFIC GRAVITY (7N-2016): SPECIFIC GRAVITY (4S-2015): SPECIFIC GRAVITY (7N-2015):	1.084 1.090 1.078 1.089	2 units above Snowden's specific gravity of 1.082 5 units above Snowden's specific gravity of 1.085 equal to Snowden's specific gravity of 1.078 2 units below Snowden's specific gravity of 1.091	

SUMMARY: Yield variable, very good to poor, trends towards trial averages.
Excellent specific gravity - always well above trial averages, gravity averaging from 0.002 below to 0.005 above Snowden.
Lighter chip color than Snowden after 6 months of cold storage.
Susceptible to common scab (slightly more scab tolerant than Snowden).
High bruise susceptibility (ME, MI).
Smaller size profile.
Only had hollow heart concerns in ME (7.4%) in 2016.
Finished trials with 2nd year in 2016.

W8822-1

PROGRAM:	UNIVERSITY OF W	ISCONSIN - JEFF ENDELMAN
PEDIGREE:	FASAN X TUNDRA	4
USE:	Chip from field an	d long-term cold storage
MATURITY:	LATE	
TRIALS:	all 11 states 4 Southern + 2 No	Year: 2016 rthern Year: 2015
TOTAL Yield (4S-2016): TOTAL Yield (7N-2016): TOTAL Yield (4S-2015): TOTAL Yield (OR/WI-2015):	442 cwt/a 466 cwt/a 442 cwt/a 533 cwt/a	103% of Snowden's total yield of 429 cwt/a 96% of Snowden's total yield of 485 cwt/a 108% of Snowden's total yield at 410 cwt/a 90% of Snowden's total yield at 589 cwt/a
MARKETABLE Yield (4S-2016): MARKETABLE Yield (7N-2016): MARKETABLE Yield (4S-2015): MARKETABLE Yield (OR/WI-2015):	360 cwt/a 384 cwt/a 364 cwt/a 485 cwt/a	98% of Snowden's marketable yield of 366 cwt/a 93% of Snowden's marketable yield of 414 cwt/a 103% of Snowden's marketable yield at 352 cwt/a 68% of Snowden's marketable yield at 713 cwt/a
SPECIFIC GRAVITY (4S-2016): SPECIFIC GRAVITY (7N-2016): SPECIFIC GRAVITY (4S-2015): SPECIFIC GRAVITY (OR/WI-2015):	1.085 1.089 1.078 1.079	3 units above Snowden's specific gravity of 1.082 4 units above Snowden's specific gravity of 1.085 2 units above Snowden's specific gravity at 1.076 2 units above Snowden's specific gravity at 1.077

SUMMARY:

Good yields in the southern and northern trials, often equal or higher than Snowden. High specific gravity in southern and northern trials, 0.002 to 0.004 above Snowden. Late maturity.

Nice size distribution.

Good common scab resistance.

Very little hollow heart in 2016 trials.

May have cream or yellow colored flesh, depending upon seed lot or location grown. Finished trials with 2nd year in 2016.

California Regional Trial

2016 Potatoes USA – SNAC International Trial Yield Trial Report

Local Trial Coordinator:

Name: Brian Kirschenmann Grower farm: Kirschenmann Farms City-State: Bakersfield, California Phone #: 661-845-0100 E-mail: Brian@Kirschenmann.com

Cooperating Processor or Lab Evaluator:

Name: Sergio Duran Company or Institution: Kirschenmann Farms City-State: Bakersfield, California Phone #: 661-340-0866 E-mail: Sergio@Kirschenmann.com

Trial Site Data: North Canal

Trial location: (city, state) Bakersfield, CaliforniaSoil type: Sandy LoamSoil pH: 6.8% Organic matter: 12%Planting date:February 10, 2016%Vine killing date:June 3, 2016%Harvest date:June 8, 2016

Growing Conditions: Normal climate and weather for Central Valley.

Experimental Design:

Bed width (inches): 32 inch Within row spacing (inches): 6.5 inch Data plot length (feet): 320 Replication #: 4

Cultural Practices:

Fertilizer: 1000lb of dry 10-5-24 for 100 Units of Nitrogen pre-plant, 50 Gal at planting of 10-34-0, 125 Units of UN32 through the water. Irrigation: Solid Set 2.6 af Rainfall: 1.5 inch Disease Control: 4 Fungicide applications throughout season. Insect Control: 3 Insecticide applications Weed Control: 2 Herbicide applications Vine Kill: Mow in conjunction with desiccate. Vine killer material and rate: /# of applications? 15 Gal of inphuric acid, 5.5oz of ET herbicide Sprout Inhibitor: None

California Regional Trial

POTATOES USA - SNAC INTERNATIONAL CHIP TRIAL - 2016 KIRSCHENMANN FARMS , BAKERSFIELD, CALIFORNIA

planted: February 10, 2016	vine kill: June 3, 2016		harvest: June 8, 2016					
VARIETY	TOTAL YIELD	MARKETABLE YIELD	percent	percent	percent	SPECIFIC	AGTRON CHIP	PERCENT
VARIET	cwt/acre	cwt/acre	< 1 7/8"	1 7/8" to 3"	>3"	GRAVITY	COLOR	DEFECTS
ATLANTIC	562	516	8.3%	86.1%	5.7%	1.0946	70	0.0%
AF5040-8	538	488	9.4%	82.1%	8.5%	1.0928	68	7.5%
B2727-2	499	456	8.6%	88.2%	3.1%	1.0938	68	5.0%
CO07070-10W	512	437	14.6%	83.6%	1.8%	1.0975	68	3.5%
CO07070-13W	601	542	9.7%	80.3%	10.0%	1.0855	68	1.5%
MSR127-2	559	504	9.8%	85.7%	4.5%	1.0937	68	5.0%
MSW485-2	650	571	12.1%	80.2%	7.8%	1.0920	68	7.5%
NC0349-3	538	493	8.5%	81.8%	9.7%	1.1002	68	2.5%
NDTX0981648CB-13W	622	556	10.6%	85.8%	3.6%	1.0887	68	5.0%
NY152	541	470	13.2%	83.9%	2.9%	1.0945	70	7.5%
NY157	460	358	11.9%	87.6%	0.6%	1.0843	67	6.2%
SNOWDEN	544	496	8.9%	89.3%	1.7%	1.0896	68	3.5%
TX09396-1W	477	435	8.8%	78.9%	12.3%	1.1068	68	0.0%
W6822-3	557	483	13.2%	86.0%	0.9%	1.0897	68	0.0%
W8822-1	540	447	1 7.3 %	82.7%	0.0%	1.0872	70	0.0%
average (of 4 replications)	547	483	11.0%	84.1%	4.9%	1.0927	68	3.6%

AF5040-8 CALIFORNIA

Defects 7.5%

ATLANTIC CALIFORNIA

Defects 0%

B2727-2 CALIFORNIA

Defects 5%

Yield 456 cwt/a, SG 1.0938

CO07070-10W CALIFORNIA

Defects 3.5%

CO07070-13W CALIFORNIA

Defects 2.5%

MSR127-2 CALIFORNIA

Defects 5%

MSW485-2

Defects 7.5%

NC0349-3 CALIFORNIA

Defects 2.5%

493 cwt/a, 1.1002

NDTX098164CB-13W CALIFORNIA

5% defects

556 cwt/a, SG 1.0887

NY152 CALIFORNIA

Defects 7.5%

470 cwt/a, SG 1.1068

NY157 CALIFORNIA

Defects 6.2%

358 cwt/a, SG 1.0843, growth cracks

SNOWDEN CALIFORNIA

Defects 3.5%

496 cwt/a, SG 1.0896

TX09396-1W CALIFORNIA

Defects 0%

435 cwt/a, SG 1.1068

W6822-3 CALIFORNIA

Defects 0%

483 cwt/a, 1.0897

W8822-1 CALIFORNIA

Defect 0%

447 cwt/a, SG 1.0872

POTATOES USA - SNAC INTERNATIONAL CHIP TRIAL - CALIFORNIA -2016

COMMENTS FOR SOUTHERN PRODUCTION

ATLANTIC	Industry standard to improve upon for southern growers
AF5040-8	lower yield, good solids, try again
B2727-2	lower yield, good solids, try again
CO07070-10W	lower yield, good solids, too many undersize
CO07070-13W	good yield, solids too low, good size
MSR127-2	good yield, good solids, smaller tubers, try again
MSW485-2	great yield, good solids, good size, try again in the south
NC0349-3	good yield, good solids, good size, try again in south
NDTX0981648CB-13W	good yield, solids too low, good size
NY152 NY157	lower yield, good solids, too many undersize lower yield, lower solids, growth cracks, maybe drop for south
SNOWDEN	industry standard for northern storage, smaller tubers, lower solids,
TX09396-1W	lower yield, good solids, low defects, try again in south
W6822-3 W8822-1	lower yield, lower solids, too many undersize lower yield, lower solids, too many undersize

FLORIDA REGIONAL LOCATION

Local Coordinators:

Pam Solano **Biological Scientist** University of Florida/IFAS Hastings Agricultural Extension Center Research Farm Hastings, FL 32145-0728

Dr. Lincoln Zotarelli Assistant Professor University of Florida/IFAS Horticultural Sciences Department Gainesville, FL 32611

Trial Data:

Planting Site: University of Florida/IFAS, Hastings Agricultural Extension Center Research Farm. The soil at the field site is classified as Ellzey fine sand silt). The trials were conducted under conditions that represent the grower's practices for potato production in the northeast of the state and most of the production areas of the state of Florida. The research plots were irrigated with seepage irrigation. In this system, the perched water table depth is managed by water flow into irrigation furrows spaced separated by irrigation furrows. Each bed consisted of sixteen raised potato rows. A clay layer underlies the topsoil at a depth of 3 to 5 feet in the TCAA. Planting Date: February 15, 2016 May 17, 2016 (92 days). Trials were harvested with a single-row commercial potato harvester Overall growing conditions for the 2016 growing season were rated as good. There was a good distribution of rainfall throughout the season with few large rainfall events (e.g. March 24th with 1.38" and May 17th to 20th with cumulative 3.39"). Relatively good stands and plant vigor were observed. Overall temperatures were near normal for the season. There were no freeze events during the growing season. Total and marketable yields were good for most clones tested in this trial with few exceptions. Tuber specific gravity was near normal for most of the varieties tested in this and other trials. There were only few incidences of internal defects. This was a randomized complete block, four replication experiment Experimental Design: designed in eight 375 ft rows with plots of two rows by 20 ft. 8 inches in-row, 40 inches between-rows. Preplant: 14-6-12 (100 lb/acre N); Side-dress: 14-0-12 (100 lb/acre N)

Pic-Clor 60 Fumigant, 11 Gallons/A, pre-plant

Pest Control:

Cooperating Grower:

University of Florida/IFAS Hastings Agricultural Extension Center Research Farm

Cooperating Chip Processor:

Utz Quality Foods Inc. Hanover, PA

(sandy, siliceous, hyperthermic Arenic Ochraqualf; sand 93%, 1% clay, 6% between beds. Potatoes were grown in 60 feet wide beds. Each bed was

Harvest Date:

Growing Conditions:

Row Spacing:

Fertilizer:

Regent, 3.0 oz/A, Quadris, 10.4 oz/A, and Vydate C-LV, 68 oz/A in furrow
at planting
Boundary, 24 oz/A at "boarding off" for weed control
Fungicides and Insecticides as needed. IPM program used.Chip Ratings:Chips were prepared and rated following the procedures outlined in the
Snack Food Association Chipping Potato Handbook (1995). Chips were
prepared and fried by Utz Quality Foods. Chip scores are presented in
Table 4.

Table 1.	Plant	growth	characteristics.
----------	-------	--------	------------------

	Early Vigor		Vine Maturity	
Rating	(plant height)	Vine Type	at Harvest/Vine Kill	
1	no emergence	decumbent – poor	dead	
2	leaves in rosette	decumbent – fair	+-	
3	plants < 2 in	decumbent – good	yellow and dying	
4	plants 2 to 4 in	spreading – poor	+-	
5	plants 4 to 6 in	spreading – fair	moderately senesced	
6	plants 6 to 8 in	spreading - good	+-	
7	plants 8 to 10 in	upright – poor	starting to senesce	
8	plants 10 to 12 in	upright – fair	+-	
9	plants > 12 in	upright – good	green and vigorous	

Adapted from Sisson and Porter, 2002.

	Internal	Skin	Skin	Tuber	Eye	Overall	
Rating	Flesh Color	Color	Texture	Shape	Depth	Appearance	
1	White	Purple	Partial Russet	Round	Very Deep	Very Poor	
2	Cream	Red	Heavy Russet	Mostly Round	+-	+-	
3	Light Yellow	Pink	Mod. Russet	Round to Oblong	Deep	Poor	
4	Medium Yellow	Dark Brown	Light Russet	Mostly Oblong	+-	+-	
5	Dark Yellow	Brown	Netted	Oblong	Intermediate	Fair	
6	Pink	Tan	Slightly Netted	Oblong to Long	+-	+-	
7	Red	Buff	Mod. Smooth	Mostly Long	Shallow	Good	
8	Blue	White	Smooth	Long	+-	+-	
9	Purple	Cream	Very Smooth	Cylindrical	Very Shallow	Excellent	

Adapted from Sisson and Porter, 2002.

Table 3. Production statistics for the 2016 USPB Snack Food Association Trial potato selections.

	Total	Marketal	ole Yield ¹	_								
	Yield		% of		Siz	e Distributio	n by Class ((%) ²		Size Class	Range (%)	Specific
Clone	(cwt/A)	(cwt/A)	standard	С	В	A1	A2	A3	A4	A1 to A3	A2 to A3	Gravity
Season–92 days												
AF5040-8	363	260	82	4	18	75	2	1	0	78	3	1.080
B2727-2	374	305	96	3	13	78	3	3	0	84	6	1.077
CO07070-10W	299	169	53	14	27	55	2	2	0	59	4	1.077
CO07070-13W	272	165	52	11	26	60	3	0	0	63	3	1.072
MSR127-2	383	310	97	4	14	76	4	3	0	82	6	1.079
MSW485-2	436	249	78	9	33	56	1	1	0	59	2	1.071
NC0349-3	353	294	92	4	10	65	11	10	0	86	21	1.073
NDTX081648CB-13W	304	200	63	7	22	67	3	1	0	71	4	1.070
TX09396-1W	374	305	96	4	12	72	7	5	0	85	12	1.076
NY152	374	289	91	3	17	76	2	2	0	80	4	1.075
NY157	343	241	76	6	20	67	6	1	0	74	7	1.072
W6822-3	352	226	71	8	27	60	2	3	0	65	5	1.083
W8822-1	408	296	93	5	21	71	1	2	0	74	3	1.080
ATLANTIC	397	318	100	4	13	73	6	4	0	83	10	1.076
SNOWDEN	322	227	71	5	23	68	33	1	00	72	3	1.078
MSD ³	88	85		3	7	9	4	5	ns	8	7	0.009
P Value	<0.0001	<0.0001		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-	<0.0001	<0.0001	<0.0001

¹Marketable Yield: size classes A1 to A3.

²Size classes: C = 0.5 to 1.5", B = 1.5 to 1.88", A1 = 1.88 to 2.5", A2 = 2.5 to 3.25", A3 = 3.25 to 4", A4 = >4". Size Class Distribution calculated based on weight using the formula, Class Wt / (Total Yield Wt – Cull Wt) * 100.

³Means separated within columns by Tukey's Studentized Range (HSD) Test.

Table 4. Plant growth and tuber characteristics for the 2016 USPB Snack Food Association Trial potato selections.

	Plan	t Growth Ch	aracteristi	cs ¹	Tuber Characteristics ²							
	%	Early	Vine	Vine							Chip	
Clone	Stand	Vigor	Туре	Maturity	IFC	SC	ST	TS	ED	APP	Score	Merit
AF5040-8	100	9	6	5	2	9	8	2	5	7	64.2	4
B2727-2	98	9	6	6	2	7	7	3	8	6	63.7	1
CO07070-10W	98	9	6	5	1	6	6	2	5	6	64.1	4
CO07070-13W	99	9	6	4	2	9	6	1	8	8	62.1	4
MSR127-2	99	9	6	7	1	6	7	2	7	6	60.9	2
MSW485-2	99	9	6	6	2	7	7	1	7	9	61.9	2
NC0349-3	97	9	6	6	1	7	6	2	5	7	64.7	4
NDTX081648CB-13W	100	9	6	4	1	7	7	2	6	7	65.2	3
TX09396-1W	99	9	6	7	2	7	7	2	5	5	62.4	3
NY152	99	9	6	7	2	7	7	2	7	6	6 <u>2.</u> 4	3_
NY157	99	9	6	6	2	7	7	1	7	8	63.8	4
W6822-3	100	9	6	5	2	7	6	2	7	8	62.0	4
W8822-1	99	9	6	7	2	6	6	2	7	8	61.2	3
ATLANTIC	100	9	6	6	2	7	6	2	7	7	62.1	-
SNOWDEN	99	9	6	4	1	6	6	2	5	8	64.6	-

¹ Percent Stand: final stand / number of seeds planted per plot * 100 where number of seeds was 30 for 20 ft plot, 8 in spacing. Early Vigor, Vine Type, Vine Maturity: see rating system outlined in Table 1.

² Internal Flesh Color (IFC), Skin Color (SC), Skin Texture (ST), Tuber Shape (TS), Eye Depth (ED), Overall Appearance (APP): see rating system outlined in Table 2. Chip Score: A subsample of potatoes from the trial was shipped to Utz Quality Snacks, chipped and scored according to the Hunter Lab rating. Merit Score: 1-4 scale: 1 = outstanding, 2 = good/keep, 3 = marginal, 4 = not acceptable/drop.

Table 5. External and internal defects for the 2016 USPB Snack Food Association Trial potato selections.

		c	% External ⁻	Tuber Defect	s				%	Internal Defe	ects ²		
	Growth	Mis-	Sun-	Rotten	Total	Enlarged						Brown Cente	er
Clone	Cracks	shapen	burned	& misc.	Culls ¹	Lenticel	HH	BR	CRS	IHN	L	М	Н
AF5040-8	0	0	2	6	8	0	0	0	0	3	0	0	0
B2727-2	0	0	3	1	4	0	0	0	0	0	0	0	0
CO07070-10W	0	0	2	2	4	0	0	0	0	0	0	0	0
CO07070-13W	0	0	2	2	4	0	0	0	0	0	1	0	0
MSR127-2	0	0	1	1	2	0	0	0	0	1	0	0	0
MSW485-2	0	0	1	1	2	0	0	0	0	0	0	0	0
NC0349-3	0	0	2	1	4	0	2	0	0	8	1	1	0
NDTX081648CB-13W	0	0	1	6	7	0	1	0	0	0	1	1	1
TX09396-1W	0	0	2	2	4	0	1	0	0	1	0	0	0
NY152	00	0	2	2	4	00	0	0	0	11	11	1	0
NY157	0	0	1	4	6	0	1	0	0	6	1	1	1
W6822-3	0	0	2	1	3	0	0	0	0	3	1	0	0
W8822-1	0	0	1	1	3	0	0	0	0	1	0	0	0
ATLANTIC	0	0	2	2	4	0	1	0	0	2	0	1	0
SNOWDEN	0	0	1	1	2	00	00	0	0	1	0	0	1
MSD ³	ns	ns	ns	4	4	ns	ns	ns	ns	7	ns	ns	ns
P Value	0.4708	-	0.2016	<0.0001	<0.0001	-	0.1083	-	-	0.0033	0.7697	0.7841	0.593

¹Percent of Total Yield. Total culls include the sum of growth cracks, misshapen, sunburned and rotten/misc.

²Percent tubers hollow heart (HH), brown rot (BR), corky ringspot (CRS), internal heat necrosis (IHN), Brown Center: light (L), moderate (M), heavy (H).

³Means separated within columns by Tukey's Studentized Range (HSD) Test.

Table 6. Chip sample results from UTZ Quality Foods, Inc. testing of the 2016 USPB Snack Food Association Trial potato selections.

	%	%	%	SAMPLE	SAMPLE	HUNTER			CHIP	RAW
	EXTERNAL	INTERNAL	TOTAL	WEIGHT	WEIGHT	LAB	MERIT		DEFECT DESCRIPTION/	TUBER
Clone	DEFECT	DEFECT	DEFECT	(LBS)	(GRAMS)	SCORE	SCORE	GRAV.	COMMENTS	COMMENTS
AF5040-8	0	4	4	2.10	953.40	64.2	13	1.090	STEM-END BROWN, ROT	SMALL TUBERS, ROUND SHAPE, SMOOTH SKIN
B2727-2	0	2	2	1.75	771.80	63.7	1	1.094		MEDIUM TO LARGE TUBERS, SOME BLOCKY
CO07070-10W	0	0	0	1.10	794.50	64.1	2	1.088		VERY SMALL TUBERS, ROUND SHAPE
CO07070-13W	0	0	0	1.30	499.40	62.1	4	1.081		MEDIUM SIZE TUBERS, ROUND SHAPE
MSR127-2	0	0	0	2.65	590.20	60.9	15	1.093	STEM-END BROWN, VASCULAR BROWN	UNIFORM MEDIUM SIZE TUBERS, ROUND SHAPE
MSW485-2	0	6	6	1.30	1203.10	61.9	8	1.082	STEM-END BROWN	EXTREMELY SMALL TUBER SIZE, ROUND SHAPE
NC0349-3	0	1	1	1.85	590.20	64.7	12	1.078	STEM-END BROWN	MEDIUM SIZE TUBERS, ROUND SHAPE
NDTX081648CB-13W	0	3	3	1.20	839.90	65.2	10	1.079	VASCULAR BROWN	SMALL TUBER SIZE, ROUND SHAPE
TX09396-1W	0	1	1	2.70	544.80	62.4	7	1.084	STEM-END BROWN	MEDIUM TO LARGE TUBER SIZE, ROUND SHAPE
NY152	0	1	1	1.60	726.40	62.4	5	1.088	STEM-END BROWN	UNIFORM MEDIUM TUBER SIZE, ROUND SHAPE
NY157	0	0	0	1.60	726.40	63.8	3	1.087		SMALL TUBER SIZE, ROUND SHAPE
W6822-3	0	6	6	1.40	749.10	62.0	11	1.097	BROWN CENTER	VERY SMALL TUBER SIZE, ROUND SHAPE
W8822-1	0	1	1	1.90	1225.80	61.2	6	1.093	STEM-END BROWN	SMALL TUBER SIZE, ROUND SHAPE
ATLANTIC	0	3	3	1.70	635.60	62.1	9	1.087	STEM-END BROWN	MEDIUM TO LARGE TUBERS, ROUND SHAPE
SNOWDEN	0	1	1	1.65	862.60	64.6	14	1.091	STEM-END BROWN	SMALL TO MEDIUM TUBER SIZE, ROUND SHAPE

HARVEST DATE: 5/17/16

SAMPLE DATE: 5/19/16

Clone Summaries

AF5040-8 - this clone had 100% of stand counts with outstanding vigor, with mid-season maturity. Marketable yield was 260 cwt/ac or 82% of Atlantic (historically 227 cwt/ac). Specific gravity of 1.080. 3% incidence of internal heat necrosis. 8% of tubers classified as culls (e.g. rotten and sunburned).

B2727-2 - mid-season maturity, this clone has 98% of the stand counts with excellent vigor. Marketable yield was 305 cwt/ac (historically 241 cwt/ac) not significantly different than Atlantic. Specific gravity 1.077. Round to oblong tubers with shallow eyes. No internal defects.

CO07070-10W - this clone was a mid-season with 98% of the stand counts. Total and marketable yields were significantly lower than Atlantic. This clone was tested in 2014 (119 cwt/ac of marketable yield 40% of Atlantic). More than 40% of the tubers fall in the B and C tuber size class.

CO07070-13W - this clone was a mid-season with 99% of the stand counts. Total and marketable yields were significantly lower than Atlantic. This clone was tested in 2014 (208 cwt/ac of marketable yield 70% of Atlantic). 37% of the tubers fall in the B and C tuber size class.

MSR127-2 - was a mid-late clone with 99% of the stand counts and excellent early vigor. Yields comparable to Atlantic, 383 cwt/ac for total (historically 310 cwt/ac) and 310 cwt/ac for marketable (historically 241 cwt/ac). Specific gravity was higher (1.079 in 2016; 1.072 historically) than previous years. Mostly round tubers, with 1% of internal heat necrosis.

MSW485-2 - mid-late maturity. This was the highest total yield of 2016 trial with 436 cwt/ac (historically 364 cwt/ac). Marketable yield was 249 cwt/ac (historically 281 cwt/ac), 42% of the tubers classified as B and C. Specific gravity 1.071. No detectable internal defects.

NC0349-3 - mid-late maturity clone with 97% of the stand counts and great early vigor. 294 cwt/ac of marketable yield (92% of Atlantic). 86% of tuber classified between A1-A3. Specific gravity 1.073. Incidence of internal heat necrosis (8%), hollow heart (2%) and brown center (2%).

NDTX081648CB-13W - this clone was a mid-early maturity with 100% of the stand and good early vigor. Marketable yield (200 cwt/ac) was significantly lower than Atlantic (historically 133 cwt/ac). Specific gravity of 1.070 (historically 1.062).

TX09396-1W - mid-late maturity clone. Similar marketable yields compared to Atlantic, 305 cwt/ac (historically 206 cwt/ac). 85% of the tuber in the A1-A3 size class. Specific gravity 1.076. Incidence of internal heat necrosis (1%) and hollow heart (1%)

NY152 - mid-late maturity clone. Total yield (374 cwt/ac) and marketable yield (289 cwt/ac in 2016 and 193 in 2014). Specific gravity of 1.075. 1% incidence of internal heat necrosis and 2% incidence of brown center. **NY157** - This is the first year of testing of this clone in FL. This clone had 99% of stand counts with outstanding vigor, with mid-season maturity. Marketable yield was 241 cwt/ac or 76% of Atlantic. Specific gravity of 1.072. Incidence of 1% of hollow heart, 6% incidence of internal heat necrosis and 3% with brown center. 6% of tubers classified as culls (e.g. rotten and sunburned).

W6822-3 - this clone was a mid-late season with 100% of the stand counts. Marketable yields were significantly lower than Atlantic (226 cwt/ac). This clone was tested in 2014 (246 cwt/ac of marketable yield 82% of Atlantic). 35% of the tubers fall in the B and C tuber size class. Incidence of 3% of internal heat necrosis. Highest specific gravity of 2016 trial with 1.083.

W8822-1 - maturity for this clone was slightly earlier than mid-season. Total yield (2016, 408 cwt/ac; this clone was tested in 2011 with total yield of 225 cwt/ac) and marketable yield (296 cwt/ac in 2016, historically 118 cwt/ac). Specific gravity 1.080. 1% incidence of internal heat necrosis.

Atlantic - was the control cultivar for this trial with 100% stand counts with good early vigor, mid-season maturity. Atlantic had relatively high total yield (2016 - 397 cwt/ac; historically 354 cwt/ac) and it was the highest marketable yield in 2016 season (318 cwt/ac; historically 301 cwt/ac). Specific gravity was 1.076 (historically 1.077). Incidence of hollow heart (1%), internal heat necrosis (2%) and brown center (1%).

Snowden - maturity for this clone was slightly earlier than mid-season. Snowden had relatively lower total yield (2016, 322; historically 360 cwt/ac) and marketable yield (227 cwt/ac in 2016, historically 303 cwt/ac) compared to Atlantic. Specific gravity 1.078 (historically 1.075). 1% incidence of internal heat necrosis.

Day	January	February	March	April	May
1	0.14	0.00	0.00	0.88	0.00
2	0.01	0.00	0.00	0.24	0.00
3	0.68	0.00	0.00	0.00	0.00
4	0.00	2.36	0.24	0.00	1.69
5	0.00	0.00	0.00	0.00	0.00
6	0.14	0.22	0.00	0.00	0.00
7	0.00	0.24	0.00	0.00	0.00
8	0.09	0.03	0.00	0.00	0.00
9	0.01	0.00	0.00	0.00	0.00
10	0.00	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00	0.02
12	0.00	0.00	0.00	0.00	0.00
13	0.00	0.00	0.66	0.05	0.50
14	0.00	0.00	0.01	0.02	0.00
15	0.18	0.00	0.00	0.00	0.00
16	0.10	0.99	0.00	0.00	0.00
17	0.69	0.00	0.06	0.01	1.74
18	0.00	0.00	0.01	0.00	0.14
19	0.00	0.00	0.01	0.00	1.36
20	0.00	0.00	0.00	0.00	0.15
21	0.00	0.00	0.00	0.00	0.01
22	0.84	0.00	0.00	0.82	0.00
23	0.00	0.02	0.00	0.08	0.00
24	0.00	0.44	1.38	0.00	0.00
25	0.00	0.00	0.17	0.00	0.00
26	0.00	0.00	0.00	0.00	0.00
27	0.81	0.00	0.93	0.00	0.00
28	0.23	0.00	0.00	0.00	0.02
29	0.01	0.00	0.00	0.00	0.00
30	0.00		0.01	0.00	0.56
31	0.00		0.00		0.05
Total	3.93	4.30	3.48	2.10	6.24

Table 7 – Daily rainfall amounts (in) at the UF/IFAS Hastings AEC Research Farm between Jan. 1 and May 31, 2016.

Day	Max.	N. 41:				irch	A			ay
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
1	80	59	79	52	79	44	87	62	87	66
2	60	56	79	60	78	49	82	64	89	65
3	56	50	84	69	76	47	71	52	89	70
4	62	46	77	52	63	49	78	52	75	63
5	59	49	54	42	67	44	79	51	77	57
6	57	51	60	46	70	47	74	60	75	51
7	60	52	55	42	74	47	80	62	81	51
8	68	58	63	36	77	51	83	55	87	55
9	69	60	57	44	80	54	74	50	85	57
10	68	48	54	34	82	60	75	47	84	64
11	55	37	67	32	82	60	77	57	87	65
12	62	35	75	44	81	60	84	56	88	66
13	57	37	63	42	81	65	75	65	91	67
14	62	39	63	39	84	65	75	67	88	68
15	73	54	71	47	86	65	73	68	82	60
16	73	50	72	55	87	64	75	65	85	62
17	63	47	72	47	81	66	72	55	90	70
18	59	39	64	45	79	63	74	55	87	69
19	51	35	67	51	76	66	78	54	87	68
20	64	33	73	47	79	62	78	51	85	69
21	70	37	77	54	63	43	81	59	86	70
22	70	53	76	54	70	38	85	60	84	67
23	53	36	83	61	77	45	81	64	83	62
24	54	31	80	56	83	51	80	60	86	62
25	67	34	63	48	75	62	80	60	87	62
26	70	47	61	42	81	66	82	56	84	62
27	68	57	64	37	83	70	86	62	84	64
28	61	56	71	37	83	67	88	64	85	65
29	66	46	75	45	79	61	89	64	90	67
30	68	40			77	59	88	67	92	68
31	68	47			86	66			93	69
Avg.	64	46	69	47	78	57	80	59	86	64

Table 8 – Daily maximum and minimum air temperatures (°F) at the UF/IFAS Hastings AEC Research Farm between Jan. 1 and May 31, 2016.

Idaho Regional Trial

2016 Potatoes USA – SNAC International

Local Coordinator: Jeff Stark Chelsey Lowder Justin Hatch		University of Idaho Aberdeen R&E Center Aberdeen, Idaho		Collaborating Chip Processor: Bob Moerkerke
<u>Trial Data</u> PLANTED VINE KILLED HARVESTED		4-May/2016 1-Sep/2016 21-Sep/2016		
PLOT LENGTH HILL SPACING HILLS PER PLOT REPS	17.7' 10.6" 20 4	HARVEST LENGTH ROW SPACING ROWS/ PLOT	17.7' 36" 4	
METHOD OF HARVEST		Grimme Machine		

FERTILIZER

Pre plant	Nitrogen	Phosphorous	Potassium	Zn-Mn
Soil test	12	17	185	0.7-3.3
Pre-Plant	92	170	0	10.0-3.0
In-Season	Date	Rate		Product
Injection	8-Jul	35 Units		Uran
Injection	20-Jul	35 Units		Uran
Injection	3-Aug	35 Units		Uran
HERBICIDES APPLIED)			
Spray Coupe	26-May	1.0 pt/A		TriCor 4F
Spray Coupe	26-May	1.5 oz/A		Matrix
Spray Coupe	26-May	5.0 pt/A		Eptam 7-E
INSECTICIDES APPLI	ED/HILLING			
Shanked	24-May	8 oz/A		Admire
L)			

~114 Hours/25 Inches

				Perce	nt					
	Yield (d	cwt/A)		Size Distribution						
Clone	US No 1	Total	US No 1	<2"	2-2.5"	2.5-3"	>3.25"	Unusable	Gravity	
NDA081453CAB-2C	406	483	84	7	10	36	38	9	1.087	
MSW485-2	391	514	76	19	26	40	9	5	1.093	
NY152	376	497	75	22	31	35	9	3	1.096	
AF5040-8	366	412	89	5	14	38	36	6	1.092	
LAMOKA	352	465	75	10	16	36	22	16	1.097	
NDTX0981648CB-13W	331	425	77	21	27	38	11	1	1.088	
MSR127-2	320	476	67	32	32	32	3	1	1.088	
NY157	313	414	75	21	25	37	13	4	1.087	
W8822-1	299	394	76	22	31	34	11	2	1.091	
SNOWDEN	288	387	73	26	33	32	9	1	1.092	
AF4648-2	285	389	73	17	19	39	16	9	1.089	
TX09396-1W	285	359	79	14	19	43	17	8	1.091	
W6822-3	280	391	72	16	24	32	15	12	1.094	
B2727-2	266	337	79	16	21	37	21	6	1.094	
NC0349-3	262	344	76	21	26	40	10	3	1.087	
CO07070-10W	226	328	69	25	29	32	7	7	1.106	
Mean	315	413	76	18	24	36	15	6	1.092	

Clone	Tuber Appearance	Fresh Merit Score ¹	Tubers/ Plant	Avg. Tuber Size (oz.)	Tuber Shape ²
NDA081453CAB-2C	Flat/green (3), some shatter (2)	3.8	6.3	7.5	1.9
MSW485-2	Skinning (3), round (2), green (2), few bumps	3.5	10.5	4.9	1.5
NY152	Few ats (4), some flat/green (2) some russeting/flaking skin (2)	3.5	9.9	4.9	1.6
AF5040-8	Green (4), flat (3)	3.6	5.7	7.3	2.4
LAMOKA	Flat/green (4), ats (2)	3.4	7.0	6.7	2.4
NDTX0981648CB-13W	Few ats (3), few flat/deep ends (2)	3.4	8.9	5.0	2.3
MSR127-2	Shatter (4), round unifrom (2) Mr (2),	3.9	11.3	4.3	1.6
NY157	Shatter (4), flat (3), green (2)	3.3	8.5	5.1	2.1
W8822-1	Hr (3), flaky skin (3), roudn/uniform (3)	4.1	8.2	5.0	1.6
SNOWDEN	Bumps (3), deep ends (2), few ats (2)	2.9	8.3	4.5	2.0
AF4648-2	Green (4), flat (3), few bumps	3.6	6.8	5.6	2.3
TX09396-1W	Green (2), few flat (2), few mis shapen, some skinning	3.1	6.0	5.8	2.0
W6822-3	Green (2), shatter (2)	3.3	7.4	5.4	1.9
B2727-2	Not uniform/green/scab (3), low yield	2.5	5.7	5.8	2.6
NC0349-3	Few green/ats (2) few but deep pit	3.8	7.1	5.0	1.6
CO07070-10W	Few green (2), bumps, few deep ends	3.5	7.4	4.5	2.1
Mean		3.4	7.8	5.4	2.0

	Ex	ternal defects ³			Internal Defects ⁵						
		Growth		Eye	%	%	%	%			
Clone	Scab	Cracks	Knobs	Depth ⁴	HH	BC	IBS	V			
NDA081453CAB-2C	4.1	4.9	4.5	3.6	0.0	0	0	0			
MSW485-2	4.6	4.6	5.0	3.1	0.0	0	0	0			
NY152	3.8	5.0	5.0	3.4	0.5	0	0	0			
AF5040-8	3.8	5.0	5.0	2.8	0.0	0	0	0			
LAMOKA	3.9	5.0	5.0	3.4	0.3	0	0	0			
NDTX0981648CB-13W	4.0	4.9	5.0	3.1	0.8	0	0	0			
MSR127-2	4.9	4.9	4.9	3.5	0.0	0	0	0			
NY157	4.0	5.0	5.0	3.5	0.0	0	0	C			
W8822-1	4.8	4.9	5.0	3.6	0.0	0	0	0			
SNOWDEN	4.5	5.0	5.0	2.5	0.0	0	0	0			
AF4648-2	4.9	4.8	5.0	3.1	0.0	0	0	0			
TX09396-1W	4.0	4.9	5.0	3.0	0.0	0	0	C			
W6822-3	4.1	5.0	4.8	2.8	0.0	0	0	0			
B2727-2	2.9	4.9	5.0	3.5	0.0	0	0	0			
NC0349-3	3.4	4.9	5.0	3.4	2.8	0	0	0			
CO07070-10W	4.5	4.9	5.0	3.4	0.0	0	0	C			
Mean ³ (1-5) 5=None	4.1	4.9		3.2	0.3	0.0	0.0	0.			

Maine Regional Trial

****YIELD, GRADE, AND OUT-OF-FIELD QUALITY REPORT****

POTATOES USA/SNACK FOOD ASSOCIATION POTATO CHIP VARIETY TRIAL, MAINE 2016

Cooperators:

Local Coordinator: Greg Porter 5722 Deering Hall, Room 415 University of Maine Orono, ME 04469-5722 (207) 581-2943 porter@maine.edu

<u>Cooperating Processor:</u> Cape Cod Chips Snyder's-Lance Jeff Thomas/Patrick Blake Hyannis, MA PBlake@snyderslance.com JThomas@snyderslance.com (508) 418-1012

Variety Entries:

Atlantic (Field Std.) Lamoka (Storage Std.) Snowden (Storage Std.) AF4648-2 AF5040-8 B2727-2 CO07070-10W MSR127-2 MSW485-2 NC0349-2 NDTX0981648CB-13W TX09396-1W NY152 NY157 W6822-3 W8822-1

<u>Cooperating Grower(s):</u> Aroostook Research Farm University of Maine 59 Houlton Road Presque Isle, ME 04769

<u>SFA Coodinator:</u> Donald E. Halseth Cornell University 150 Plant Science Building Ithaca, NY 14853 (607)255-5460 deh3@cornell.edu

ME, University of Maine, Greg Porter ME, University of Maine, Greg Porter USDA-ARS, Beltsville, Kathy Haynes CO, San Luis Valley Res. Ctr., David Holm MI, Michigan State Univ., David Douches MI, Michigan State Univ., David Douches NC, NC State Univ., G. Craig Yencho TX, Texas A&M Univ., Creighton Miller TX, Texas A&M Univ., Creighton Miller NY, Cornell Univ., Walter De Jong NY, Cornell Univ., Walter De Jong WI, Univ. of Wisconsin, Jeffrey Endelman WI, Univ. of Wisconsin, Jeffrey Endelman

Trial Information:

Location: Soil Type: Soil Test: Aroostook Research Farm, Presque Isle, ME Caribou loam pH 5.4 Avail P (M), K (M), Ca (ML), Mg (H) 2.3% soil organic matter

Previous Crop:	clover/timothy (2015), oats (2014), potatoes (2013)
Planting Date:	May 25, 2016
Plot size/design:	36" row spacing, plots 2 rows x 30'
	Randomized (RCBD), four replicates per variety
Fertilization:	154-154-154 at planting
	Foliar boron applied July 6
In-row Spacing:	10" except Snowden (12") and AF4648-2 (8")
Crop Management:	Typical of commercial production in the area
Sprout Inhibitor:	MH-30 applied August 25
Vinekill Date:	September 12, 2016 (110 DAP)
Harvest Date:	September 29, 2016
Processing Date:	TBD

Procedures:

Seed potatoes were received from the cooperating programs listed above and held under controlled storage conditions at Aroostook Research Farm, Presque Isle, ME. The seed potatoes were warmed and hand-cut about two weeks prior to planting. They were suberized in controlled storage and hand-planted without a commercial seed treatment.

The trial was managed using practices typical of the production area. Weeds were controlled with a standard herbicide program followed by normal cultivation and hilling. Insect pests were controlled with an in-furrow insecticide. Subsequent foliar insecticides were applied based on insect pressure determined by regular scouting for pests. Foliar diseases were controlled using a conventional spray program based on the University of Maine Cooperative Extension's IPM program. Late blight was not observed in this trial during 2016. Vine desiccation was accomplished using a standard chemical desiccant. No supplemental irrigation was available for this trial site. Rainfall was abundant and well distributed; however, relatively dry conditions prevailed through the September maturation and harvest period (Table 1). Growing season temperatures were typical of this relatively cool growing area. The plots were harvested with a hand crew following lifting with a one-row, research-scale potato digger. All tubers were weighed and a 50lb sample was graded for external defects and sized using a spool-type sizer. For the three largest tuber size classes, ten tubers per size class were examined for hollow heart when sufficient tubers were available. Specific gravity was determined on a \sim 4-kg sample using the weight-in-air/weight-in-water method. A 100-lb sample was collected at harvest and placed in 50F storage prior to shipment to a commercial chip plant for evaluation of chip quality. Additional tuber samples were placed in controlled storage for evaluation of chip color during the storage season.

Results:

Rainfall was abundant and well distributed; however, relatively dry conditions prevailed through the September maturation and harvest period (Table 1). Growing season temperature conditions were typical of this relatively cool growing area. CO07070-10W was medium-early maturing and had moderate early dying; however, all of the remaining clones had good vigor throughout the growing season and remained vigorous until the vines were desiccated (Table 2). Atlantic had the greatest early-season

vigor and it was followed closely by NDTX0981648CB-13W. B2727-2, TX09396-1, ad W8822-1 had the lowest early-season vigor. No late blight was observed in the plots during 2016. Several of the potato clones had low to moderate incidence of verticillium wilt (AF5040-8, CO07070-10W, NC0349-3, and W6822-3); however, late-season vigor was generally very good for the clones in the trial (Table 2).

Yields were very good in this trial considering that vine desiccation occurred 110 days after planting (Table 3). Tuber quality was generally quite good and specific gravities of nearly all varieties were high (Tables 3 and 4). Atlantic, Snowden, MSW485-2, NY152, NY157, and W8822-1 were highest yielding, while B2727-1, CO07070-10W, and NDTX0981648CB-13W had significantly lower yields than all of the check varieties (Table 3). AF5040-8, B2727-2, CO07070-10W, MSR127-2, MSW485-2, NC0349-3, NDTX0981648CB-13W, NY157, and W8822-1 had relatively small tuber size profiles. TX09396-1W had an especially large tuber size profile. All of the standard varieties and most of the test clones had specific gravities exceeding 1.090. Only AF4648-2 had lower specific gravity than 1.090 (1.084).

The incidence of tuber external defects was quite low for most clones in the trial (Table 4). AF4648-3 and B2727-2 had the highest incidence and both exceeded 10%. Powdery scab and common scab were present in the trial. B2727-2 had unacceptable incidence of common scab, including extensive deep pits. Hollow heart incidence was quite low for nine of the clones (3.4% or less). Hollow heart incidence exceeded 7% in the remaining six clones and was particularly high in Atlantic (12.1%), NC0349-3 (78.3%), and NY152 (32.0%).

Tuber characteristics are summarized in Table 5. AF4648-2, AF5040-8, MSW485-2, and NY157 had the best external tuber appearance. Lamoka and B2727-2 were the only clones that had more oblong tubers than would be desirable for chipping. Snowden, Atlantic, NC0349-3, and NY152 had indented stem ends and/or deep apical eyes which would make peeling difficult. MSR127-2 had more growth cracks than the other varieties. B2727-2 had scab problems and had unacceptably high incidence of deep pits caused by common scab. AF5040-8 tubers had pale yellow flesh. NY157 tubers were quite flat.

Susceptibility to skinning and bruising was evaluated by tumbling tuber samples in a drum (Table 6). Snowden, AF5040-8, CO07070-10W, NDTX0981648CB-13W, and W6822-3 were especially resistant to skinning, while Lamoka, AF4648-2, B2727-2, MSW485-2, and TX09396-1 were relatively susceptible. Lamoka, AF4648-2, MSW485-2, NC0349-3, NY152, TX09396-1, and W8822-1 were relatively resistant to fresh bruise damage. Atlantic, Snowden, ACO3433-1W, CO03243-3W, and W6822-3 were relatively susceptible to fresh bruise damage. These samples will be abrasively peeled and examined for bruise losses from storage in December to further evaluate bruise susceptibility.

Month	Week	(inches	5)		Total	Average (°F)		
	1	2	3	4	(inches)	High	Low	
May	0.29	0.84	1.03	0.80	2.96	64.9	42.9	
June	0.93	1.25	0.03	1.44	3.65	72.4	50.5	
July	2.34	1.49	0.41	1.40	5.65	77.4	56.2	
August	0.91	2.28	1.03	1.67	5.89	77.4	55.8	
September	0.15	1.02	0.91	0.40	2.48	68.3	48.3	
Grand total					20.63			

Table 1. Rainfall and temperature, 2016 Aroostook Research Farm, Presque Isle, ME

Table 2. Plant characteristics, PotatoesUSA/SFA Chip Variety Trial, Maine, 2016.

nt <u>%</u>	Cove	r		Vine	V	erticillium
nd 7/1	2 7/2	27 8/24	9/6	Mat. ¹	Foliage Color	Wilt ²
81	100	100	88	5.8 M. Late	Med. Green	2.3 Med-L
73	94	98	86	5.8 M. Late	LtMed. Grn.	3.0 Med-L
68	99	99	84	6.0 M. Late	Med. Green	2.8 Med-L
68	98	95	80	5.3 Med.	LtMed. Grn.	3.0 Med-L
68	96	93	60	5.3 Med.	Med. Green	5.0 Mod.
58	91	95	71	5.3 Med.	LtMed. Grn.	3.0 Med-L
68	89	84	50	4.0 M. Early	Med. Green	5.0 Mod.
65	94	100	96	7.0 Late	Med. Green	1.3 Low
70	100	100	89	6.8 Late	Med. Green	1.5 Low
63	95	98	79	6.0 M. Late	Med. Green	3.8 Mod.
76	100	98	76	5.5 M. Late	LtMed. Grn.	2.3 Med-L
65	94	96	86	6.3 M. Late	Med. Dk. Grn.	2.8 Med-L
73	99	100	83	5.5 M. Late	Med. Green	3.3 Med-L
58	94	100	95	7.0 Late	LtMed. Grn.	1.3 Low
63	94	96	75	5.5 M. Late	Med. Green	3.8 Mod.
58	96	99	90	6.8 Late	Med. Dk. Grn.	2.3 Med-L
13	11	5	18	0.9		1.2
	nd 7/1 81 73 68 68 68 68 68 68 68 68 68 68 63 63 70 63 63 70 63 63 70 63 63 73 8 63 58 63 58 63 58	nd 7/12 7/2 81 100 73 94 68 99 68 98 68 96 58 91 68 89 65 94 70 100 63 95 76 100 65 94 73 99 58 94 63 94 58 94 63 94 63 94 63 94 63 94	nd 7/12 7/27 8/24 81 100 100 73 94 98 68 99 99 68 98 95 68 96 93 58 91 95 68 89 84 65 94 100 70 100 100 63 95 98 76 100 98 65 94 96 73 99 100 58 94 96 73 99 100 58 94 96 58 94 96 58 96 99	nd 7/12 7/27 8/24 9/6 81 100 100 88 73 94 98 86 68 99 99 84 68 98 95 80 68 96 93 60 58 91 95 71 68 89 84 50 65 94 100 96 70 100 100 89 63 95 98 79 76 100 98 76 65 94 96 86 73 99 100 83 58 94 96 75 63 94 96 75 63 94 96 75 63 94 96 75 63 94 96 75 63 94 96 75 63 94 96 99 90	nd 7/12 7/27 8/24 9/6 Mat. ¹ 81 100 100 88 5.8 M. Late 73 94 98 86 5.8 M. Late 68 99 99 84 6.0 M. Late 68 98 95 80 5.3 Med. 68 96 93 60 5.3 Med. 68 98 95 71 5.3 Med. 68 89 84 50 4.0 M. Early 65 94 100 96 7.0 Late 70 100 100 89 6.8 Late 63 95 98 79 6.0 M. Late 64 63 95 98 76 5.5 M. Late 65 94 96 86 6.3 M. Late 65 94 96 86 6.3 M. Late 65 94 96 7.0 Late 63 65 94 96 75 5.5 M. Late 63 94 96 7	Ind 7/12 7/27 8/24 9/6 Mat. ¹ Foliage Color 8 100 100 88 5.8 M. Late Med. Green 73 94 98 86 5.8 M. Late LtMed. Grn. 68 99 99 84 6.0 M. Late Med. Green 68 99 99 84 6.0 M. Late Med. Green 68 99 99 84 6.0 M. Late Med. Green 68 98 95 80 5.3 Med. LtMed. Grn. 68 96 93 60 5.3 Med. LtMed. Grn. 68 96 93 60 5.3 Med. LtMed. Grn. 68 89 84 50 4.0 M. Early Med. Green 65 94 100 96 7.0 Late Med. Green 63 95 98 79 6.0 M. Late Med. Green 64 63 95 98 76 5.5 M. Late Med. Green 65 94 96 86 6.3 M. Late Med. Green 5.5 M. Late

¹Vine Mat.: 1 to 9 where 1=very early; 3=early; 5=mid-season; 7=late; 9=extremely late. Rated September 6, 2016.

²Verticillium wilt: 1 to 9 where 1=none; 9=completely dead. Rated September 6, 2016.

111ai, 101aiiie, 2010.	Yiel	d (cwt	$(A)^1$	Siz	e Di	istrił	outio	on (9	% by wei	$(ght)^2$	Spec.
Variety/Clone	Tot.	US#1	%Std	1	2	3	4	5	1-7/8	2-1/2	Grav.
									to 4"	to 4"	
Atlantic	404	376	100	3	55	35	6	1	96	41	1.098
Lamoka	355	318	85	3	54	41	2	0	97	43	1.093
Snowden	367	348	93	2	50	42	7	0	98	48	1.102
AF4648-2	347	296	79	5	56	35	4	0	95	39	1.084
AF5040-8	332	297	79	5	68	26	1	0	95	27	1.096
B2727-2	301	248	66	6	63	29	3	0	94	31	1.099
CO07070-10W	257	219	58	9	66	22	3	0	91	25	1.111
MSR127-2	338	306	81	5	72	23	1	0	95	24	1.094
MSW485-2	395	362	96	7	72	21	0	0	93	21	1.104
NC0349-3	330	286	76	6	66	26	2	0	94	28	1.093
NDTX0981648CB-13W	298	265	70	9	76	15	1	0	91	16	1.101
NY152	408	360	96	5	59	32	4	0	95	36	1.092
NY157	369	338	100	7	65	26	2	0	93	28	1.090
TX09396-1W	319	285	90	4	38	41	18	0	96	59	1.098
W6822-3	333	296	79	4	50	40	5	0	96	46	1.104
W8822-1	392	363	96	5	67	26	2	0	95	28	1.102
Mean	347	310							95	34	1.098
CV(%)	8.9	10.6							1.7	20.8	0.665
LSD(k=100)	42	45							2	9	0.011

Table 3. Yield, size distribution, and specific gravity, PotatoesUSA/SFA Chip Variety Trial, Maine, 2016.

 $^1\text{US\#1}$ yield was calculated as yield from 17 to 4" diameter, minus tubers with external defects.

²Size Classes: $1=1\frac{1}{2}$ to $1\frac{7}{8}$ "; $2=1\frac{7}{8}$ to $2\frac{1}{2}$ "; $3=2\frac{1}{2}$ to $3\frac{1}{4}$ "; $4=3\frac{1}{4}$ to 4"; 5= over 4"

Variety/CloneExternal Defects (% by weight) Total Sunb Mshp GrckHollow Heart1 (%)Atlantic 3.2 1.4 0.9 0.7 0.0 0.2 12.1 Lamoka 7.9 4.8 2.2 0.4 0.3 0.2 0.0 Snewder 2.8 0.6 1.8 0.2 0.0 0.1 2.4
Total SunbMshpGrck $Scab^2$ Rot(%)Atlantic 3.2 1.4 0.9 0.7 0.0 0.2 12.1 Lamoka 7.9 4.8 2.2 0.4 0.3 0.2 0.0
Atlantic3.21.40.90.70.00.212.1Lamoka7.94.82.20.40.30.20.0
Atlantic3.21.40.90.70.00.212.1Lamoka7.94.82.20.40.30.20.0
Lamoka 7.9 4.8 2.2 0.4 0.3 0.2 0.0
$S_{\text{normalized}}$ 2.8 0.6 1.8 0.2 0.0 0.1 2.4
Snowden 2.8 0.6 1.8 0.3 0.0 0.1 3.4
AF4648-2 10.5 3.9 2.8 2.2 1.1 0.4 2.0
AF5040-8 5.7 1.8 1.7 2.3 0.0 0.0 0.0
B2727-2 12.8 3.2 1.2 0.0 8.3 0.0 2.2
CO07070-10W 6.2 3.2 1.3 0.3 1.2 0.2 2.1
MSR127-2 4.9 0.1 1.4 3.4 0.0 0.0 0.0
MSW485-2 1.5 0.8 0.7 0.0 0.0 0.0 7.3
NC0349-3 7.8 2.2 1.7 0.5 3.4 0.0 78.3
NDTX0981648CB-13W 2.6 0.2 1.6 0.0 0.8 0.0 7.9
NY152 7.6 5.3 1.5 0.1 0.7 0.0 32.0
NY157 1.9 0.5 0.8 0.0 0.5 0.1 2.4
TX09396-1W 7.2 3.1 3.1 0.9 0.0 0.1 9.4
W6822-3 7.5 5.2 2.0 0.2 0.1 0.1 7.4
W8822-1 2.4 0.1 1.8 0.4 0.0 0.1 2.2
Mean 5.8 2.3 1.7 0.7 1.0 0.1 10.5
CV(%) 81.0
LSD(k=100) 8.8

Table 4. External tuber defects and hollow heart incidence, PotatoesUSA/SFA Chip Variety Trial, Maine, 2016.

¹Tubers were cut in the size classes from $2\frac{1}{2}$ to 4" diameter; the overall percent hollow heart is presented.

²Powdery scab was more prevalent than common scab in this trial; the percent scab data presented is combined common and powdery scab.

Variety/Clone	Shape	Skin Tex- ture	Eye Depth	Gen. Appear.	Comments
Atlantic	R-O	Net	M-D	F	dse,dae, dull, netted
Lamoka	O-R	Sln.	M-S	F	oblongs, off shapes
Snowden	R-O	Net	M-D	F-P	dull, dse, dae, netted, dark
AF4648-2	R-O	S	M-S	F-G	bright
AF5040-8	R-O	S	M-S	F-G	bright, small, pale yellow (YF)
B2727-2	O-R	Sln.	M-S	Р	oblongs, pitted scab
CO07070-10W	R-O	Sln.	M-S	F	coarse net, small
MSR127-2	R-O	Net	M-S	F	dull, netted
MSW485-2	R	Sln.	M-S	F-G	nice shape
NC0349-3	R	Sln.	M-D	F	deep eyes, small
NDTX0981648CB-13W	R-O	Sln.	M-S	F	pink eyes, small
NY152	R-O	Net	M-D	F	deep eyes, netted
NY157	R-O	Sln.	M-S	F-G	flat
TX09396-1W	R-O	Sln.	M-S	F	large, slight off shapes
W6822-3	R-O	Sln.	M-S	F	
W8822-1	R-O	Net	M-S	F-P	dark, netted, coarse net

Table 5. Tuber characteristics, PotatoesUSA/SFA Chip Variety Trial, Maine, 2016.

Shape: R=mostly round; R-O=round to oblong; O-R=oblong to round; O=oblong Skin Texture: S=smooth; M-S=moderately smooth; Sln.=slight net; Net=strongly netted Eye Depth: S=shallow; M-S=moderate to shallow; M-D=moderate to deep; D=deep Flesh Color: Wh=white; OW=off white; YF=yellow fleshed, higher numbers indicate brighter yellow; dse=deep stem end; dae=deep apical end.

Table 6. Bruise susceptibility scores, September, PotatoesUSA/SFA Chip Variety Trial,	
Maine, 2016.	

Variety/Clone		ng & Bru o Peeling	ise (tumble Peeled 7	Comments on
	Index	%	% Incid.	 peeled tubers
		Thumbn		1
		Cracks		
Atlantic	3.65	75.0		
Lamoka	5.74	18.0		
Snowden	3.02	40.0		
AF4648-2	5.06	25.5		
AF5040-8	2.97	75.4		
B2727-2	5.48	36.7		
CO07070-10W	1.27	70.0		
MSR127-2	4.33	68.3		
MSW485-2	5.27	13.3		
NC0349-3	4.20	8.3		
NDTX0981648CB-13W	2.35	48.4		
NY152	3.91	5.0		
NY157	4.10	90.0		
TX09396-1W	5.92	11.7		
W6822-3	2.80	80.0		
W8822-1	3.17	23.4		
Mean	3.95	43.0		
CV(%)	21.0	27.1		
LSD(k=100)	1.11	15.0		

¹Sixty tubers were evaluated per variety/clone. Fifteen tubers per plot were tumbled on September 29 (replications #1 and 2 and October 3 (replications #3 and 4) [1 or 4 days after harvest] in a paddled drum for 1 minute at 15 rpm. Index scores indicate combined severity of skinning plus fresh bruise (higher values indicate more severe bruising). For the peeled ratings, percent incidence (% of tubers with visible bruise) and surface area values are combined scores for shatter and blackspot rated on December xx, 2016. The peeled scores will be available later in the storage season.

Variety/Clone Summary 2016:

<u>Atlantic:</u> Medium vine maturity, round to oblong tubers with netted skin and moderatelydeep eyes. Good yields, low to moderate external defects incidence, high specific gravity, relatively high hollow heart incidence during 2015 and 2016, and moderate to high bruise susceptibility.

<u>Lamoka</u>: Medium-late vine maturity, oblong to round tubers with smooth to slightly netted skin, moderately-shallow eyes, and good appearance. Moderate yields, low external defects incidence, high specific gravity, low to moderate hollow heart incidence, relatively high skinning susceptibility, and relatively low bruise susceptibility.

<u>Snowden:</u> Medium-late to late vine maturity, round to oblong tubers with netted skin and moderately-deep eyes. Good yields, low external defects incidence, moderate to high specific gravity, low hollow heart incidence, and acceptable bruise susceptibility.

<u>AF4648-2:</u> Medium vine maturity, round to oblong tubers with smooth to slightly netted skin, moderately shallow eyes, and good appearance. Moderate yields, low external defects incidence except for some greening and powdery scab susceptibility, moderate specific gravity, low hollow heart incidence, relatively high skinning susceptibility, and relatively good bruise resistance scores.

<u>AF5040-8:</u> Medium vine maturity, round to oblong tubers with smooth skin, moderately shallow eyes, good appearance, and pale yellow flesh. Moderate to high yields, low external defects incidence, small tuber size profile, high specific gravity, low hollow heart incidence, and acceptable skinning and bruise tolerance scores.

<u>B2727-2:</u> Medium vine maturity, oblong to round tubers with slightly netted skin and moderately-shallow eyes. Moderate to low yields, unacceptable scab susceptibility including deep pits, small tuber size profile, high specific gravity, low hollow heart incidence, and relatively high skinning susceptibility.

<u>CO07070-10W:</u> Medium-early vine maturity, round to oblong tubers with slightly netted skin, moderately shallow eyes, and fair appearance. Low yield, low external defects incidence, small tuber size profile, high specific gravity, low hollow heart incidence, and relatively good skin set scores.

<u>MSR127-2</u>: Late vine maturity, round to oblong tubers with netted skin, moderately shallow eyes, and fair appearance. Moderate yield, low external defects incidence, small tuber size profile, high specific gravity, low hollow heart incidence, and relatively high skinning susceptibility.

<u>MSW485-2</u>: Late vine maturity, round tubers with slightly netted skin, moderately shallow eyes, and fair to good appearance. High yield, low external defects incidence, small tuber size profile, high specific gravity, moderate hollow heart incidence, and relatively high skinning susceptibility.

<u>NC0349-3:</u> Medium-late vine maturity, round tubers with slightly netted skin, moderately deep eyes, and fair appearance. Moderate yield, moderate external defects incidence, small tuber size profile, high specific gravity, extremely high hollow heart incidence, and relatively high skinning susceptibility.

<u>NDTX0981648-13W:</u> Medium-late vine maturity, round to oblong tubers with slightly netted skin, moderately shallow eyes with pink pigmentation, and fair appearance. Moderate to low yield, low external defects incidence, small tuber size profile, high specific gravity, moderate hollow heart incidence, and relatively good skin set scores.

<u>NY152:</u> Medium-late vine maturity, round to oblong tubers with netted skin, moderately-shallow to moderately deep eyes, and fair appearance. Good yields, low to moderate external defects incidence, moderate to high specific gravity, high hollow heart incidence, and low bruise susceptibility.

<u>NY157:</u> Medium-late vine maturity, round to oblong flattened tubers with slightly netted skin, moderately-shallow eyes, and fair to good appearance. Good yields, low external defects incidence, small tuber size profile, moderate to high specific gravity, low hollow heart incidence, and relatively high skinning susceptibility.

<u>TX09396-1W:</u> Late vine maturity, round to oblong tubers with slightly netted skin, moderately-shallow eyes, and fair appearance. Moderate yields, moderate external defects incidence, large tuber size profile, high specific gravity, moderate hollow heart incidence, and relatively high skinning susceptibility.

<u>W6822-3:</u> Medium-late vine maturity, round to oblong tubers with slightly netted skin, moderately-shallow eyes, and fair appearance. Moderate to high yields, moderate external defects incidence, high specific gravity, moderate hollow heart incidence, and moderate to high bruise susceptibility.

<u>W8822-1:</u> Late vine maturity, round to oblong tubers with netted skin, moderatelyshallow eyes, and fair to poor appearance. High yields, small tuber size profile, low external defects incidence, high specific gravity, low hollow heart incidence, and and acceptable skinning and bruise tolerance scores.

Michigan Regional Trial

Potatoes USA – SNAC International 2016 Yield Trial Report

Local Trial Coordinator:

Chris Long, Potato Specialist Aaron Yoder, Potato Research Technician Michigan State University East Lansing, MI Office: (517) 355-0271 ext. #1193 Mobile: (517) 256-6529 E-mail: longch@msu.edu

Cooperating Grower:

Tim, Todd and Chase Young Sandyland Farms, LLC Howard City, MI Office: (989) 352-6708 E-mail: info@sandylandfarms.com

Cooperating Processor or Lab Evaluator:

Gene Herr Herr Foods, Inc. Nottingham, PA Office: (610) 932-6539 Email: gene.herr@herrs.com

Bradley Halladay E.K. Bare & Sons, Inc. Bird-in-Hand, PA Office: (717) 397-0351

Trial Site Data:

Location: Howard City, Michigan Soil type: Loamy Sand Soil pH: 6.0 Planting date: 5/20/2016 Vine killing date: 8/31/2016 Harvest date: 10/13/2016

% Organic matter: N/A

Experimental Design:

Bed width (inches): 34 Data plot length (feet): 23 Within row spacing (inches): 10 Replication #: 3

Cultural Practices:

Fertilizer: N/A Irrigation: N/A Rainfall: 14.55 in. (planting to harvest) Disease Control: Bravo and Manzate Insect Control: Cruiser Maxx Potato Extreme (seed treatment) Blackhawk (in season) Weed Control: N/A Vine Kill: Reglone Sprout Inhibitor: N/A

Trial Procedure:

Trial seed was sent to the MSU Agronomy Farm in Lansing, MI during the spring of 2016 where it was cut, treated (Syngenta Cruiser Maxx® Potato Extreme) and allowed to suberize at 50°F prior to being sent to Sandyland Farms, LLC. The trial was planted by the grower cooperator on May 20th, 2016.

Pre-harvest sugar profiles were taken for each variety on August 22nd and August 31st; approximately one week and immediately prior to vine-kill. The pre-harvest sugar profile sampling protocol was conducted as follows: a canopy rating was taken for each variety as a percent rating of green foliage, canopy uniformity was noted as a percentage of how uniform the foliage coloration appeared, the number of hills required to obtain 40 tubers was recorded, along with the total number of main stems harvested. Lastly, from the 40 tubers harvested, the specific gravity, a glucose value (a percent by fresh weight), a sucrose rating (a percent by fresh weight X10) and an average tuber weight (in ounces) were recorded using the services of Techmark, Inc., Lansing, MI.

At harvest, three replicate plots of 23 feet were harvested from each entry and were used to determine trial yield averages, tuber size distribution, specific gravity and quantity of internal defects present. Analysis of Variance and mean separation were performed using JMP software. When ANOVA p-values were above the commonly established threshold of 0.05, mean separation tests were not performed.

To better assess vine vigor and maturity characteristics, vine growth ratings were made on June 22nd and August 31st respectively. Lines that matured early relative to the trial control (Snowden) include most notably CO07070-10W, NY157 and B2727-2 while lines that matured later than the control included AF4648-2, MSR127-2, MSW485-2 and AF5040-8. The rest of the lines deviated minimally from the control.

Growing Season Weather:

	From May 20th-Oct. 13th						
_	Rainfall (inches)	GDD (Base 40)					
2011	9.87	3795					
2012	10.68	3540					
2013	15.01	3667					
2014	15.67	3465					
2015	14.39	3623					
2016	14.55	4065					
Average	13.36	3692					

Table A. Rainfall and GDD (Base 40) from the Entrican, MI weather station from the past 6 years (enviroweather.msu.edu).

Table A above displays precipitation and growing degree day information from the past 6 years at the Montcalm Research Center weather station (enviroweather.msu.edu) located in Entrican, MI which is close in proximity to the SNAC Trial plot. The total precipitation during the course of the growing season (described here as May 20th or the date of planting to October 13th, the day of harvest) in 2016 (14.55") was slightly higher than the previous 6-year average (13.36") and

the cumulative growing degree days (base 40 °F) during this same time period were notably higher in 2016 (4065) than the 6-year average (3692). **Results:**

Table 1. Summary of yield, size distribution, and specific gravity data at harvest. Entries are organized based on US#1 yield, where the highest yielding lines are at the top and lowest at the bottom of the chart. Mean values are expressed below the chart along with ANOVA p-values and LSD values.

	Yield (cwt/A)		Percent Size Distribution					
Entry	US#1	TOTAL	US#1	Small	Mid-Size	Large	Culls	Specific Gravity
NY152	578	664	87	10	85	2		-
-			-	-			1	1.076
MSR127-2	543	600	90	9	76	14	1	1.082
W8822-1	515	583	88	11	84	4	1	1.084
NY157	504	560	90	9	83	7	1	1.079
MSW 485-2	483	575	84	15	83	1	1	1.086
Lamoka	441	489	90	9	85	5	1	1.081
Snowden	438	524	83	16	81	2	1	1.086
NC0349-3	420	472	89	11	80	9	0	1.072
TX09396-1W	407	437	93	7	67	26	1	1.080
CO07070-10W	368	468	79	20	77	2	1	1.088
NDA081453CAB-2C	335	386	82	11	78	9	2	1.078
B2727-2	304	352	86	13	81	5	1	1.079
AF5040-8	303	376	81	18	77	4	1	1.080
AF4648-2	301	347	87	11	73	14	2	1.075
NDTX081648CB-13W	287	359	80	20	79	1	1	1.084
W6822-3	198	295	67	32	66	1	1	1.082
MEAN	402	468	85	14	78	7	1	1.081
ANOVA p-value	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.495	<0.0001
LSD	58.4	57.0	4.9	3.7	5.4	4.5	-	0.002

*small <1 7/8"; mid-size 1 7/8"-3 1/4"; large >3 1/4"

Table 2. Summary of internal tuber quality at harvest. The internal quality across the trial was generally acceptable, but the evidence of in-season environmental stress was observed in some lines. As with table one, mean values are expressed below the chart along with ANOVA p-values and LSD values.

ble 2. At-Harvest Tuber Qual	ity. Sandyla	nd Farms,	Howard C	ity, Michigan.
	F	Raw Tuber (Quality ¹ (%)
Entry	НН	VD	IBS	BC
NY152	0	23	7	0
MSR127-2	0	47	0	0
W8822-1	0	43	0	0
NY157	0	47	3	0
MSW485-2	7	40	3	0
Lamoka	0	30	7	0
Snowden	7	43	0	0
NC0349-3	60	83	0	0
TX09396-1W	7	27	3	0
CO07070-10W	0	27	7	0
NDA081453CAB-2C	0	27	7	3
B2727-2	3	13	13	0
AF5040-8	0	13	7	0
AF4648-2	0	33	3	0
NDTX081648CB-13W	0	20	0	0
W6822-3	3	50	3	3
MEAN	5	35	4	0
ANOVA P-value	<0.0001	<0.0001	0.67	0.57
LSD	7.8	21.2	-	-

¹Internal Defects. HH = hollow heart, VD = vascular discoloration, IBS = internal brown spot, BC = brown center.

Table 3. Post-harvest chip quality from samples collected at harvest on October 13th, 2016, and processed at Herr Foods, Inc. on October 17th, 2016. Entries are organized based on processor rankings, with the highest ranking chip lines at the top and the lowest ranked lines at the bottom. Chip color was generally acceptable across the trial, with NY152 having the highest Agtron score of the trial at 57.2.

	Agtron	SFA ²	Specific	Perce	nt Chip De	fects ³
Entry	Color	Color	Gravity	Internal	External	Total
W6822-3	53.7	2.0	1.076	5.1	3.7	8.8
NY157	56.5	2.5	1.076	4.9	10.4	15.3
NY152	57.2	3.0	1.076	11.4	7.9	19.3
MSW485-2	50.6	2.5	1.078	11.9	7.7	19.6
NDA081453CAB-2C	53.1	2.5	1.074	7.7	2.4	10.1
B2727-2	54.9	3.0	1.074	14.0	7.9	21.9
Lamoka	55.5	2.5	1.077	9.7	7.5	17.2
Snowden	53.6	3.0	1.080	11.0	14.5	25.5
CO07070-10W	52.7	3.0	1.085	14.4	15.8	30.2
AF5040-8	54.2	3.0	1.074	10.1	11.7	21.8
TX09396-1W	NA	4.0	1.077	7.5	18.9	26.4
AF4648-2	56.7	3.0	1.074	14.5	7.2	21.7
NDTX081648CB-13W	53.1	3.0	1.078	14.4	6.7	21.1
MSR127-2	53.8	3.5	1.077	27.8	5.7	33.5
NC0349-3	56.5	3.5	1.071	20.1	6.8	26.9
W8822-1	53.1	3.5	1.079	18.2	8.2	26.4

¹ Samples collected October 13th and processed by Herr Foods, Inc., Nottingham, PA on October 17th, 2016.

Chip defects are included in Agtron and SFA samples.

²SFA Color: 1= lightest, 5 = darkest

³Percent Chip Defects are a percentage by weight of the total sample; comprised of undesirable color, greening, internal defects and external defects.

Table 4. Black spot bruise evaluation summary. Results below are from two, 25 tuber samples that were collected at harvest. One sample served as a check while the second sample was stored for at least 12 hours at 50 °F and then placed in a plywood drum and rotated 10 times to simulate conditions conducive to bruising. After ten days of storage at room temperature, all samples were abrasively peeled and scored for bruising. The chip lines are organized by the 'average bruises per tuber', with the lowest (most desirable) at the top and highest (least desirable) at the bottom.

					A	A. (Check Sa	amples ¹		B. Simulated Bruise Samples ²								
								Percent	Average								Percent	Average
	# of	Bru	ises	Pe	Tuk	ber	Total	Bruise	Bruises Per	# of	Brui	ses	Per	Tul	ber	Total	Bruise	Bruises Pe
Entry	0	1	2	3	4	5	Tubers	Free Tuber		0	1	2	3	4	5	Tubers	Free	Tuber
NDA081453CAB-2C	22	3	0	0	0	0	25	88	0.1	18	6	1	0	0	0	25	72	0.3
W6822-3	24	1	0	0	0	0	25	96	0.0	14	6	3	2	0	0	25	56	0.7
NDTX081648CB-13W	21	4	0	0	0	0	25	84	0.2	13	6	6	0	0	0	25	52	0.7
AF4648-2	23	2	0	0	0	0	25	92	0.1	13	7	3	2	0	0	25	52	0.8
Lamoka	18	5	1	1	0	0	25	72	0.4	11	8	3	2	1	0	25	44	1.0
MSW485-2	13	11	1	0	0	0	25	52	0.5	9	8	5	1	1	1	25	36	1.2
MSR127-2	17	7	1	0	0	0	25	68	0.4	2	14	6	0	1	1	24	8	1.5
NY157	17	7	0	0	0	0	24	71	0.3	7	5	7	0	1	3	23	30	1.7
AF5040-8	14	6	5	0	0	0	25	56	0.6	6	9	2	3	2	2	24	25	1.7
NCO349-3	17	6	2	0	0	0	25	68	0.4	4	8	6	3	2	2	25	16	1.9
B2727-2	12	7	3	3	0	0	25	48	0.9	4	6	7	5	2	1	25	16	1.9
W8822-1	11	10	4	0	0	0	25	44	0.7	6	6	5	3	1	4	25	24	2.0
CO07070-10W	8	9	5	2	0	0	24	33	1.0	6	3	6	5	0	5	25	24	2.2
TX09396-1W	9	10	5	1	0	0	25	36	0.9	4	4	5	7	3	2	25	16	2.3
Snowden	15	5	5	0	0	0	25	60	0.6	2	4	8	4	3	4	25	8	2.6
NY152	3	13	6	2	1	0	25	12	1.4	6	1	2	4	3	9	25	24	3.0

¹Tuber samples collected at harvest and held at room temperature for later abrasive peeling and scoring.

2Tuber samples collected at harvest, held at 50°F for at least 12 hours, then placed in a 6 sided plywood drum and rotated 10 times to produce simulated bruising.

They were then held at room temperature for later abrasive peeling and scoring.

Tables 5A-B. Summary of the results from pre-harvest panel data collected on August 22nd and August 31st, 2016.

	Specific	Specific Glucose ¹ Sucrose ² Canopy Number of							
Entry	Gravity	%	Rating	Rating ³	Uniform.⁴	Hills	Stems	Weig	
W6822-3	1.077	0.004	0.626	75	75	5	11	2.90	
NY157	1.079	0.003	0.295	50	75	3	18	3.69	
NY152	1.078	0.003	0.090	75	100	2	11	3.81	
MSW485-2	1.085	0.004	0.993	75	100	3	7	4.27	
NDA081453CAB-2C	1.077	0.003	0.931	25	75	3	11	4.46	
B2727-2	1.076	0.003	0.449	50	75	5	11	4.31	
Lamoka	1.074	0.006	0.535	100	100	3	12	4.26	
Snowden	1.082	0.003	0.378	50	100	3	5	4.16	
CO07070-10W	1.092	0.003	0.710	25	100	4	21	2.96	
AF5040-8	1.074	0.003	0.565	75	100	3	7	3.41	
TX09396-1W	1.076	0.004	0.327	100	75	4	8	6.28	
AF4648-2	1.067	0.008	0.503	75	100	5	10	2.95	
NDTX081648CB-13W	1.072	0.014	0.890	100	100	3	11	1.85	
MSR127-2	1.073	0.006	0.845	100	100	3	9	3.09	
NC0349-3	1.074	0.005	1.086	25	75	4	11	3.59	
W8822-1	1.085	0.003	0.415	75	100	4	15	4.11	

2 Sucrose Rating is the percent of sucrose by weight in a given amount of fresh tuber tissue X10.

3 The Canopy Rating is a percent rating of green foliage (0 is all brown, dead foliage; 100 is green, vigorous foliage).

4 The Canopy Uniformity is a percentage of how uniform the foliage health is at the date of observation.

5 The Average Tuber Weight is the total tuber weight collected, divided by the number of tubers, reported in ounces.

Table 5B. Pre-Harvest Panel, 8/31/2016

	Specific	Glucose ¹	Sucrose ²	Ca	nopy	Num	ber of	Average Tuber
Entry	Gravity	%	Rating	Rating	Uniform.⁴	Hills	Stems	Weight
W6822-3	1.073	0.003	0.735	25	75	4	10	2.67
NY157	1.074	0.003	0.439	25	75	3	9	3.80
NY152	1.076	0.002	0.402	50	100	4	21	3.75
MSW485-2	1.079	0.002	0.52	100	75	3	8	3.88
NDA081453CAB-2C	1.070	0.002	0.727	25	100	6	15	3.04
B2727-2	1.072	0.002	0.482	25	75	5	10	4.70
Lamoka	1.079	0.002	0.544	75	75	4	19	4.54
Snowden	1.080	0.002	0.51	75	75	4	17	4.32
CO07070-10W	1.085	0.002	0.692	0	100	2	12	3.49
AF5040-8	1.075	0.002	0.512	25	75	3	10	4.13
TX09396-1W	1.082	0.003	0.54	75	75	4	13	5.21
AF4648-2	1.064	0.003	0.492	75	75	3	12	3.57
NDTX081648CB-13W	1.077	0.005	0.538	50	100	3	24	2.90
MSR127-2	1.076	0.003	0.492	100	100	2	12	3.89
NC0349-3	1.073	0.002	0.561	25	100	3	13	4.55
W8822-1	1.085	0.003	0.492	50	75	3	15	4.40

2 Sucrose Rating is the percent of sucrose by weight in a given amount of fresh tuber tissue X10.

3 The Canopy Rating is a percent rating of green foliage (0 is all brown, dead foliage, 100 is green, vigorous foliage).

4 The Canopy Uniformity is a percentage of how uniform the foliage health is at the date of observation.

5 The Average Tuber Weight is the total tuber weight collected, divided by the number of tubers reported in ounces.

Variety Comments:

<u>NY152</u>: This variety recorded the top overall yield in the SNAC trial for the second year in a row with a 578 cwt. /A US#1 yield. The specific gravity (1.076) was below the trial average (1.081) (Table 1). Raw internal tuber quality was generally acceptable with 23 percent of the tubers expressing vascular discoloration and 7 percent internal brown spot (Table 2). Chip quality at Herr Foods was above average, ranking 3rd out of 16 lines for overall appearance with the highest AGTRON score of 57.2 (Table 3). NY152 had the highest level of black spot bruising with an average of 3.0 bruises per tuber (Table 4).

<u>MSR127-2:</u> This line was the second highest yielding variety in the 2016 trial with a 543 cwt./A US#1 yield and a slightly above average specific gravity of 1.082 (Table 1). This line exhibited a significant level of vascular discoloration at 47 percent (Table 2). This variety was below average in chip performance at Herr Foods out-of-the-field fry test, ranking 14th out of 16 entries due to internal coloration and stem end defects. Other comments on the variety include the observation that it has nice skin, no scab and a good size profile. Pre-harvest panel data for this line indicates that it may have been slightly immature, as the vines were estimated at 100% green just prior to vine-kill along with the fact that sucrose and glucose levels were still apparently dropping at the last sample date (Tables 5A-B).

<u>W8822-1</u>: This variety had an above average yield of 515 cwt. /A US#1 (Table 1). The specific gravity was above the trial average at 1.084. This variety exhibited a significant level of vascular discoloration in raw tuber evaluations at 43 percent (Table 2). Other observations included the mention of a cream colored flesh. Herr's ranked this line 16th of 16 lines for chip quality due to the presence of internal color and bruising. This was supported by black spot bruise evaluations which indicate that it had an average of 2.0 bruises per tuber (Table 4).

<u>NY157</u>: This variety recorded the fourth highest yield in this year's trial at 504 cwt/A US#1 with a slightly lower than average specific gravity at 1.079 (Table 1). As with many of the lines in the trial, vascular discoloration appeared to be significant with 47 percent recorded in addition to 3 percent internal brown spotting (Table 2). Black spot bruising was moderate with an average of 1.7 bruises per tuber (Table 4). This line was ranked number 2 among 16 entries by Herr's for chip quality with an AGTRON score of 56.5 and mention of a tuber size profile amenable to processing.

<u>MSW485-2:</u> This line had an above average yield of 483 cwt. /A US#1 with an above average specific gravity of 1.086 (Table 1). 40 percent vascular discoloration, 7 percent hollow heart and 3 percent internal brown spotting were observed from harvested tubers (Table 2). This line performed moderately in the black spot bruise evaluation with 1.2 bruises per tuber recorded (Table 4). Herr's ranked this line 4th of 16 for chip quality with comments including mention of nice skin and size profile (Table 3).

Lamoka: Lamoka yielded slightly above the trial average at 402 cwt. /A US#1, and tied the trial average for specific gravity at 1.081 (Table 1). Internal tuber quality was moderate with 30 percent vascular discoloration and 7 percent internal brown spotting (Table 2). Herr's ranked this line 7th of 16 with comments mentioning the oblong tuber shape with large size and minor bruising (Table 3). Lamoka performed moderately in the black spot bruise evaluation with an average of 1.0 bruises per tuber (Table 4). Lamoka appeared to be chemically mature based on pre-harvest panel data (Table 5A-B) as sucrose levels had plateaued while specific gravity had increased between the two dates.

<u>Snowden:</u> Snowden, the trial check variety yielded slightly above the trial average at 438 cwt./A US#1 and an above average specific gravity at 1.086 (Table 1). Seven percent of tubers evaluated displayed hollow heart along with 43 percent vascular discoloration (Table 2). Herr's ranked Snowden 8th of 16 for chip quality with 25.5 percent total defects and comments mentioning presence of stem end and a good size profile (Table 3). Snowden performed poorly in the black spot bruise evaluation at 2nd to last with an average of 2.7 bruises per tuber (Table 4).

<u>NCO349-3</u>: This line had an average yield at 420 cwt. /A US#1 with a below average specific gravity of 1.072 (Table 1). Raw tuber quality was very poor with 60 percent of tuber evaluated expressing hollow heart and 83 percent with vascular discoloration (Table 2). Herr's ranked this line 15th of 16 with 26.9 percent total defects and mention of substantial hollow heart, scab and stem end (Table 3). In addition, the black spot bruise evaluation showed that this line had an average of 1.9 bruises per tuber.

<u>TX09396-1W</u>: This line had an average yield at 407 cwt./A US#1 near the trial average, recording only 320 cwt./A US#1 with a specific gravity of 1.080 (Table 1). Twenty six percent of tubers were classified as oversized, the highest number of any line in the trial. Internal quality was moderate with 7 percent hollow heart, 27 percent vascular discoloration and 3 percent internal brown spotting noted (Table 2). Herr's ranked this line 11th of 16 for chip quality with mention of a variable size profile and internal coloration (Table 3). In black spot bruise evaluation, this line performed poorly with an average of 2.3 bruises per tuber (Table 4).

<u>CO07070-10W</u>: This line had a slightly lower than average yield at 368 cwt. /A US#1 and the highest specific gravity in the trial at 1.088 (Table 1). Internal tuber quality was moderate with 27 percent vascular discoloration and 7 percent internal brown spotting observed (Table 2). This was the earliest maturing line in the trial and had a uniform, round tuber shape. It was ranked 9th of 16 by Herr's for chip quality, where scab, bruising and stem end were all mentioned (Table 3). In the black spot bruise evaluation, this line had an average of 2.3 bruises per tuber (Table 4).

<u>NDA081453CAB-2C</u>: This line had a lower than average yield of 335 cwt. /A US#1 and a specific gravity of 1.078, slightly below the trial average (Table 1). Internal tuber quality was moderate in this line with 27 percent vascular discoloration, 7 percent internal brown spotting, and 3 percent brown center noted (Table 2). Herr's ranked this line 5th of 16 for chip quality with 9.4 percent total defects and mention of minor scab and stem end (Table 3). In black spot bruise evaluation, this line performed excellent with an average of 0.3 bruises per tuber (Table 4).

<u>B2727-2</u>: This line had a lower than average yield of 304 cwt. /A US#1 and a specific gravity of 1.079 (Table 1). Internal quality was moderate with 3 percent hollow heart, 13 percent vascular discoloration and 13 percent internal brown spotting noted (Table 2). Herr's ranked this line 6th of 16 for chip quality with mention of the line's oblong shape and variable size profile (Table 3). In black spot bruise evaluations this line had an average of 1.9 bruises per tuber (Table 4).

<u>AF5040-8</u>: This line had a below average yield of 303 cwt. /A US#1 and a specific gravity of 1.080 (Table 1). Internal quality was good with only 13 percent vascular discoloration and 7 percent internal brown spotting observed (Table 2). Herr's ranked this line 10th of 16 for chip quality with 21.8 percent total defects and mention of a variable size profile, oblong shape, severe scab and yellowish flesh (Table 3). In the black spot bruise evaluation this line performed moderately with an average of 1.7 bruises per tuber (Table 4).

<u>AF4648-2:</u> This variety was the third lowest yielding line in the 2016 trial at 301 cwt. /A US#1 yield with a below average specific gravity of 1.075 (Table 1). Internal raw tuber quality was moderate with 33 percent vascular discoloration and 3 percent internal brown spotting (Table 2). AF4648-2 ranked 12th of 16 lines tested at Herr Foods for overall chip quality and appearance (Table 3). It was observed that the size was larger than desirable along with the presence of stem end and internal color in the finished chips. Positive attributes of this line include the low incidence of black spot bruising (Table 4) and superior resistance to common scab.

<u>NDTX081648CB-13W</u>: This line had a lower than average yield of 287 cwt. /A US#1 with an above average specific gravity of 1.084 (Table 1). Internal quality was moderate with 20 percent vascular discoloration noted (Table 2). Herr's ranked this line 13th of 16 for chip quality with 21.1 percent total defects observed (Table 3) and mention of internal color and a fair amount of scab. In black spot bruise evaluations this line performed well with an average of 0.7 bruises per tuber noted (Table 4).

<u>W6822-3</u>: This line had the lowest average yield in the trial at 198 cwt. /A US#1 with a specific gravity of 1.082 (Table 1). Internal quality was poor with 3 percent hollow heart, 50 percent vascular discoloration, 3 percent internal brown spotting and 3 percent brown center reported (Table 2). Herr's ranked this line 1st of 16 for chip quality with only 8.8 percent total defects (Table 3) and mention of a nice size with minor defects. In black spot bruise evaluations this line performed poorly with an average of 2.0 bruises per tuber (Table 4).

<u>Missouri Regional Trial</u>

Local Coordinators:	Cooperating Grower:
Jeremy Buchman Black Gold Farms	Jim Browning Black Gold Farms
4320 18 th Ave South	1521 State Hwy NN
Grand Forks, ND 58201	Charleston, MO 63834
Trial Data:	
Planting Site:	Black Gold Farms, Charleston, Mississippi County, MO
Planting Date:	March 14, 2016
Harvest Date:	July 7, 2016 (115 days)
Growing Conditions:	Planting was delayed by one week due to heavy rain. Soil temperatures were warm compared to historical norms following a very warm winter for the location. Conditions were good for planting and very favorable temperatures persisted throughout most of the growing season until mid-June when daytime temperatures regularly reached the mid-90s. Total rainfall was 15.5 inches from planting to harvest: March 2.85 inches, April 2.87 inches, May 5.79 inches, June 1.34 inches and July 2.65 inches. Irrigation of 12.6 inches was supplemented for a total of 28.1 inches total throughout the season. Heavy rainfall occurred very close to harvest in July.
Soil Type:	Malden loamy fine sand
Experimental Design:	Four row plot (10 seed pieces per row) with double center rows harvested and combined for grading. Randomized complete block design with 4 replications.
Materials and Methods:	Field notes were taken at 100 and 115 DAP including vine vigor rating (0-10, 0 = dead and 10 = very green and healthy) and % ground cover notes along with pictures and vine comments. Stand counts were taken and all plots had > 90% stands (data not included). Stems counts were taken off one repetition by counting total stems per plot and counting plants per plot. Grading was done by weighing and counting all tubers less than 4" but greater than 1 7/8" (marketable) and those smaller than 1 7/8" to 1" (undersize). Potatoes less than 1" were not measured. No potatoes > 4" (oversize) were found in the trial. Ten (10) potatoes were selected and assessed for scab (0-10, 0 = scab-free and 10 = heavily pitted). These tubers were then cut longitudinally and assessed for Internal Heat Necrosis (IHN), Internal Brown Spot (IBS), Growth Crack (GC) and Hollow Heart (HH). Data was recorded as percentage positive for each defect. A QC sample was pooled into a single sample for each variety for specific gravity and fry sample. A 200 lb sample of each variety was sent to our processor cooperator, Jason Cornman from Snyder's-Lance, Inc. for commercial processing assessment.
Row Spacing:	Spaced 10 inches apart, 34" row width.
Fertilizer:	251 N, 86 P, 208 K
Weed Control:	Matrix 0.1 lbs/A Prowl 1.5 pts/A
Insect Control:	Wrangler – 8 fl oz/A in furrow
Disease Control:	Quadris in-furrow 8 fl oz/A Vydate in-furrow 2.1 pts/A Bravo 1.5 pts/A Manzate 4.5 fl pts/A

Atlantic:

Canopy at 100 DAP (left) and 115 DAP (right)

Tubers at grading

Comments: Standard early season check, overall good appearance and very little HH and IHN.

Snowden:

Canopy at 100 DAP (left) and 115 DAP (right)

Tubers at grading Comments: Standard late season check, very lumpy and deep-eyed.

AF5040-8:

Canopy at 100 DAP (left) and 115 DAP (right)

Tubers at grading Comments: Nice tuber shape, round but slightly flat, light-medium yellow flesh.

Canopy at 100 DAP (left) and 115 DAP (right)

Tubers at grading

Comments: Slightly elongated tubers with nice white flesh. Low, small but dense canopy with good ground coverage. Most scab observed in the trial.

Canopy at 100 DAP (left) and 115 DAP (right)

Tubers at grading Comments: Nice round tubers. Lots of wet breakdown noted during harvest.

CO07070-13W:

Canopy at 100 DAP (left) and 115 DAP (right)

Tubers at grading

Comments: High set of small tubers, weak canopy noted. Wet breakdown was noted and the variety had the heaviest amount of growth cracks observed in the trial.

MSR127-2:

Canopy at 100 DAP (left) and 115 DAP (right)

Tubers at grading

Comments: Nice shape and uniformly scab-free.

MSW485-2:

Canopy at 100 DAP (left) and 115 DAP (right)

 Tubers at grading

 Comments:
 High yield with mostly nice shape and some pear shapes. Minor IBS was noted as the only defect.

NC0349-3:

Canopy at 100 DAP (left) and 115 DAP (right)

Tubers at grading

Comments: Large, round tubers with good overall external appearance. Worst hollow heart in the trial, noted even in small tubers.

NDTX0981648CB-13W:

Canopy at 100 DAP (left) and 115 DAP (right)

Tubers at grading Comments: Poor overall tuber shape, lots of pear shapes. Noted to have the lowest fry defects in the trial.

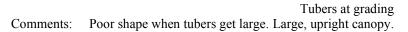
NY152:

Canopy at 100 DAP (left) and 115 DAP (right)

Tubers at grading Comments: Nice shape and high set. Second worst hollow heart noted in the trial.

NY157:

Canopy at 100 DAP (left) and 115 DAP (right)



Tubers at grading Comments: Nice tubers with slightly flat shape. Low processed defects.

Canopy at 100 DAP (left) and 115 DAP (right)

W6822-3:

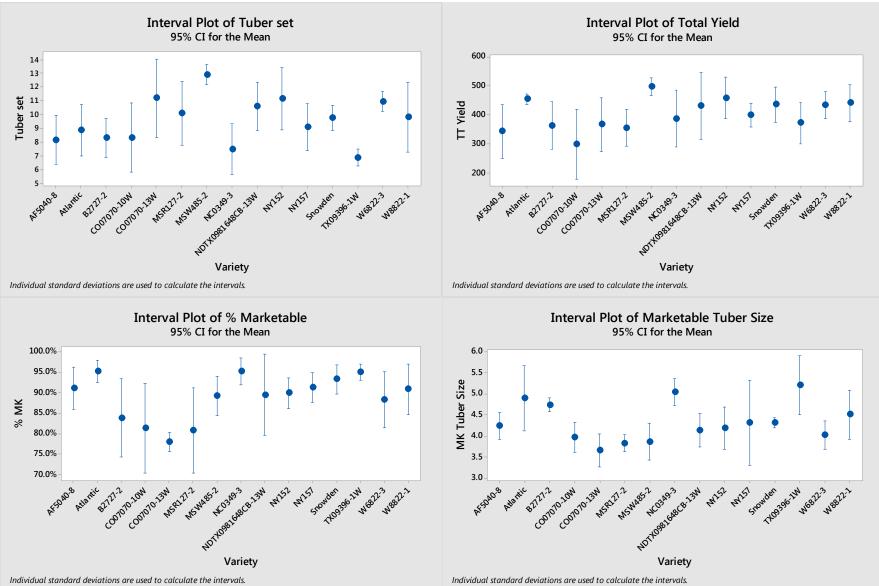
Canopy at 100 DAP (left) and 115 DAP (right)

Tubers at grading Comments: OK shape, some deep eyes. Low internal and fry defects.

W8822-1:

Canopy at 100 DAP (left) and 115 DAP (right)

Tubers at grading Comments: Slightly elongated tubers, pale yellow flesh and deeply russeted skin. Good upright vine.


2016 Trial Vine Notes			In-soc	uson (100 DAP)		Harvest (115	DAP
				100 DAI)			
	Avg.	% Ground	Vine Vigor Rating		% Ground	Vine Vigor Rating	
Variety	stems per plant	Cover	(0-10)	Comments	Cover	(0-10)	Comments
Atlantic	3.1	55%	5	Slightly upright, open canopy	20%	3	
Snowden	3.0	60%	5	Very upright vine	45%	4	
AF5040-8	3.7	40%	4	Upright canopy	0%	0	Completely dead
B2727-2	2.6	55%	5	Small plant, recumbent vine	50%	3	
CO07070-10W	2.0	30%	3	Recumbent vine	20%	1	
CO07070-13W	3.4	25%	3	Purple stems, upright canopy	0%	0	Completely dead
MSR127-2	2.1	70%	6	Dense canopy	40%	5	
MSW485-2	1.8	70%	6	Short vine, slightly recumbent	60%	4	Heavy berry set
NC0349-3	3.4	70%	5	Upright canopy, Snowden-like appearance	25%	3	
NDTX0981648CB- 13W	3.7	40%	5	Generally upright canopy	40%	2	Many dead stems
NY152	3.1	50%	5	Small vine, upright	40%	2	
NY157	2.8	30%	4	Upright canopy	15%	2	
TX09396-1W	3.0	95%	7	Generally upright canopy, good canopy color and cover	5%	4	
W6822-3	3.0	50%	5	Deep purple stems	15%	3	
W8822-1	4.2	70%	6	Short vine, purple stems	30%	4	

2016 Trial Yield Results

Tuber set		Total Yield		Marketable	Yield	Marketable Tube	r Size
Variety	Tubers per plant	Variety	(All tubers) cwt/acre	Variety	Yield of tubers > 1 7/8", cwt/acre	Variety	Est. Tuber Weight, oz
MSW485-2	12.9 ^a	MSW485-2	498 ^a	MSW485-2	444.6 ^a	TX09396-1W	5.2 ª
CO07070-13W	11.2 ^b	NY152	459 ^{ab}	Atlantic	434.0 ^{ab}	NC0349-3	5.0 ^{ab}
NY152	11.2 ^b	Atlantic	456 ^{abc}	NY152	413.7 ^{abc}	Atlantic	4.9 ^{abc}
W6822-3	11.0 ^b	W8822-1	442 abcd	Snowden	407.7 ^{abc}	B2727-2	4.7 ^{bcd}
NDTX0981648CB-13W	10.6 ^{bc}	Snowden	436 abcde	W8822-1	401.7 ^{abc}	W8822-1	4.5 ^{cde}
MSR127-2	10.1 ^{bcd}	W6822-3	435 abcde	NDTX0981648CB-13W	389.3 ^{abc}	Snowden	4.3 def
W8822-1	9.8 bcde	NDTX0981648CB-13W	433 abcdef	W6822-3	385.1 ^{abcd}	NY157	4.3 defg
Snowden	9.8 bcde	NY157	401 bcdefg	NC0349-3	369.5 bcde	AF5040-8	4.2 efgh
NY157	9.1 cdef	NC0349-3	388 ^{cdefg}	NY157	366.2 bcde	NY152	4.2 efgh
Atlantic	8.9 ^{def}	TX09396-1W	374 defg	TX09396-1W	355.2 ^{cdef}	NDTX0981648CB-13W	4.1 efgh
CO07070-10W	8.3 efg	CO07070-13W	368 ^{efg}	AF5040-8	315.0 defg	W6822-3	4.0 fghi
B2727-2	8.3 efg	B2727-2	364 ^{fgh}	B2727-2	307.7 ^{efg}	CO07070-10W	4.0 fghi
AF5040-8	8.2 efg	MSR127-2	357 ^{gh}	MSR127-2	288.3 ^{fg}	MSW485-2	3.9 ^{ghi}
NC0349-3	7.5 ^{fg}	AF5040-8	344 ^{gh}	CO07070-13W	286.4 ^{fg}	MSR127-2	3.8 ^{hi}
TX09396-1W	6.9 ^g	CO07070-10W	299 ^h	CO07070-10W	245.8 ^g	CO07070-13W	3.7 ⁱ
F-value	7.81	F-value	4.88	F-value	5.61	F-value	8.73
p-value	0.00	p-value	0.00	p-value	0.00	p-value	0.00
Standard deviation	1.89	Standard deviation	66.99	Standard deviation	72.68	Standard deviation	0.53
Coefficient of Variation	19.77	Coefficient of Variation	16.60	Coefficient of Variation	20.15	Coefficient of Variation	12.16

If means were found to be significantly different, Fishers LSD test was conducted. Differing means are noted by different superscript letters.

Interval Plots of Yield Data

Variety	Hollow Heart	Internal Heat Necrosis	Growth Cracks	Internal Brown Spot	Scab Rating $(0-10, 0 = best)$	Specific Gravity	Fry Quality (1-5, 1 = best)
AF5040-8	0.0%	0.0%	0.0%	0.0%	2.3	1.093	3
Atlantic	5.0%	0.0%	2.5%	7.5%	0.5	1.092	3
B2727-2	5.0%	0.0%	0.0%	0.0%	3.8	1.093	2
CO07070-10W	0.0%	0.0%	0.0%	0.0%	0.3	1.092	2
CO07070-13W	0.0%	0.0%	10.0%	0.0%	3.0	1.071	2
MSR127-2	2.5%	0.0%	0.0%	0.0%	0.0	1.089	4
MSW485-2	0.0%	0.0%	0.0%	10.0%	0.0	1.096	3
NC0349-3	70.0%	0.0%	0.0%	0.0%	2.0	1.077	4
NDTX0981648CB-13W	5.0%	0.0%	0.0%	0.0%	1.3	1.079	1
NY152	20.0%	0.0%	0.0%	0.0%	0.5	1.079	1
NY157	0.0%	2.5%	0.0%	0.0%	0.3	1.082	1
Snowden	0.0%	0.0%	0.0%	7.5%	0.3	1.085	2
TX09396-1W	12.5%	0.0%	0.0%	0.0%	0.0	1.092	1
W6822-3	0.0%	0.0%	0.0%	7.5%	0.3	1.088	1
W8822-1	0.0%	2.5%	0.0%	0.0%	0.0	1.092	1

2016 Trial Raw Grade and Processing Quality

Raw Grade

10 tubers were selected from each rep and assessed for an overall scab rating based on a 0 to 10 scale with 10 being the worst and 0 being the best. Those 10 tubers were then sliced and assessed for hollow heart, internal heat necrosis, growth cracks and internal brown spot. Data was used to calculate an average % incidence across reps for each variety.

Processing Grade

One specific gravity and fry sample was collected for each variety. Fry samples were assessed for overall fry quality on a 1 to 5 scale with 1-3 being acceptable and 4-5 being unacceptable.

2016 SFA Trial – Processor Results – Snyder's Lance

Clone-Line-Variety	Slice Type	Specific Gravity	% Undersize	% Oversize	% Internal Defects	% External Defects	% Total Defects	Merit Score
AF5040-8	FLAT	1.093	8.9	0	9.4	1.0	10.4	3
Atlantic	FLAT	1.097	2.3	0	7.9	0.7	8.6	2
B2727-2	FLAT	1.097	4.4	0	4.7	3.5	8.2	2
CO07070-10W	FLAT	1.089	8.8	0	5.1	1.0	6.1	2
CO07070-13W	FLAT	1.081	10.9	0	6.1	0.3	6.4	2
MSR127-2	FLAT	1.086	7.5	0	7.0	1.0	8.0	2
MSW485-2	FLAT	1.094	11.0	0	4.7	1.2	5.9	2
NC0349-3	FLAT	1.080	2.6	0	22.3	3.5	25.8	4
NDTX0981648-13W	FLAT	1.090	1.7	0	7.6	1.3	8.9	2
NY152	FLAT	1.086	5.8	0	13.2	4.3	17.5	4
NY157	FLAT	1.085	1.7	0	4.9	0.4	5.3	2
Snowden	FLAT	1.083	3.8	0	4.5	2.2	6.7	2
TX09396-1W	FLAT	1.089	3.9	0	7.0	5.9	12.9	3
W6822-3	FLAT	1.092	9.9	0	5.3	0.2	5.5	2
W8822-1	FLAT	1.098	5.3	0	5.5	0.5	6.0	2

Merit Score

Overall chip merit score made by processor: 1=outstanding; 2 =good; 3 = marginal (acceptable in a pinch); 4 = drop Merit score can be a decimal fraction (i.e. 1.5) if QC averages several scores

North Carolina Regional Trial

Local Coordinators:		Cooperating Grower:	Cooperating Chip Processor:
Dr. Craig Yencho North Carolina State Univ 214A Kilgore Hall Raleigh NC, 27695	versity	Jeff Spruill Black Gold Farms 2815 N Gum Neck Road Columbia, NC 27925	Utz Quality Foods Hanover, PA
Mr. Mark Clough North Carolina State Univ 207 Research Station Rd. Plymouth NC 27962	versity		
Trial Data:			
Planting Site:	Black Gold Farr	ms, Columbia, Tyrrell County, NC	
Planting Date:	March 1, 2016		
Harvest Date:	June 20, 2016 (1	111 days)	
Growing Conditions:	for North Carol occurred burnin plants would ha favor good plan April freeze. Th the region and significant preci	ina. On April 10th after much of t g of tops, setting back the early-em ave gained from early emergence. It growth and the crop appeared to then beginning the 29th of May until caused flooding in many fields to ipitation this trial faired well and y	e last week in February and the end of March he materials had emerged a freeze/frost event erged plants and cancelling any advantage the Despite this setback conditions continued to make up much of the ground lost in the early the 7th of June significant rainfall occurred in o include the trial in this report. Despite the ields were higher than expected. Total rainfall r in, April 2.85 in, May 7.06 in and June 6.64
Soil Type:	Weeksville Silt	loam	
Experimental Design:	Randomized con	mplete block design with 5 replication	ons.
Row Spacing:	25 hills, spaced	10 inches apart, 34" row width.	
Fertilizer:	222N, 97P, 204	K, 1.3 lbs/A Nortrace citraplex 25%	zinc
Weed Control:	Matrix 1 oz/A Metribuzin 1 lbs Intensity One 12		
Insect Control:	Wrangler – 9 fl	oz/A in furrow	
Disease Control:	Quadris in furro Bravo 2 pt/A (4 Revus Top 6.2 f Curzate 60 DF 3	applications)	

	1									.7.	. 1 .		Chip C	
•	Merit ¹	Total Yield		%	Size D			<u>Class²</u>		1 ⁷ /8	2 ¹ / ₂	Specific	24 to	5 to
Clone	Score	cwt/A	cwt/A	1	2	3	4	5	Culls	to 4"	to 4"	Gravity ³	48 hrs	7 days
AF5040-8	2	420	327	10	25	47	5	0	13	77	52	1.074	2.0	3.0
Atlantic	4	458	344	8	22	44	9	0	17	75	53	1.072	2.0	3.0
B2727-2	4	288	182	12	39	25	0	0	25	64	25	1.072	2.0	2.0
CO07070-10W	2	350	244	19	42	28	0	0	12	70	28	1.079	3.0	3.0
CO07070-13W	3	361	263	16	41	31	0	0	12	73	31	1.068	3.0	3.0
Lamoka	4	373	205	9	21	29	5	0	36	55	34	1.053	3.5	3.5
MSR127-2	4	292	169	22	39	18	0	0	22	57	18	1.068	3.0	4.0
MSW485-2	4	348	185	21	39	14	0	0	26	53	14	1.070	3.0	4.0
NC0349-3	4	421	341	9	22	53	6	0	10	81	59	1.068	3.0	3.5
NDTX0981648CB-1	13W 2	376	276	16	42	32	0	0	11	73	32	1.072	2.0	3.0
NY152	4	425	324	13	35	41	0	0	11	76	41	1.070	3.5	3.0
NY157	4	377	269	12	30	38	3	0	17	71	41	1.067	3.0	3.0
Snowden	2	414	334	9	28	47	6	0	10	81	53	1.074	2.0	2.0
TX09396-1W	3	352	251	11	25	40	6	0	18	71	46	1.070	2.0	3.0
W6822-3	2	436	360	10	29	47	7	0	8	83	54	1.076	2.0	3.0
W8822-1	2	378	295	14	42	34	2	0	9	78	36	1.079	2.0	3.5
Grand Mean		379	273											
CV(%)		9	14											
LSD(k=100)		52	55											

Table 1.North Carolina. Merit Score, Total and marketable yield, percentage of total yield by size class, specific gravity and chip scores sorted by Marketable Yield.

¹ Merit Score:

1 = Outstanding; 2 = Keep; 3 = Marginal; 4 = Drop.

² <u>Size Classes:</u> 1's < 1 7/8"; 2's 1 7/8 to 2 1/2"; 3's 2 1/2 to 3 1/4"; 4's 3 1/4 to 4"; 5's \ge 4"; Culls = all defective potatoes.

Determined by weight in air/water method.

⁴ Chip Color

Ratings conducted by the NCSU Potato Breeding Program at the TRS/VGJREC within 48 hrs and again in 5 to 7 days after harvest: 1 = no defects, exceptionally bright; 2 = excellent, bright; 3 = good, light; 4 = golden, fair; 5 = dark defects, marginal; 6 = not acceptable.

	F	Plant I	Data ¹					Tub	oer Da	ata ²					% Internal	Defec	ts ³	
Clone	TYPE	DIS	POLL	MAT	CLR	TXT	тсх	TSS	SHP	' EYE	SIZE	DIS	APP	HN	HNR H	H VR	BC	SR SR
	F	0	0	E	6	6	4	7	4	e	7	0	e	0	00.0	0	0	0
AF5040-8	5	8	8	5	6	6	4	1	4	6	1	8	6	0	9.0 0	0	0	2
Atlantic	6	8	(5	6	5	5	6	3	1	1	1	5	0		3 0	0	0
B2727-2	5	8	6	5	6	6	5	7	2	8	6	5	3	0	9.0 2	0	0	2
CO07070-10W	6	7	8	4	6	7	6	5	2	7	3	8	6	0	9.0 0	0	0	0
CO07070-13W	6	8	7	5	6	6	6	6	2	7	5	8	7	0	9.0 0	0	0	0
Lamoka	9	9	7	7	6	6	5	5	5	8	6	4	3	0	9.0 0	2	0	0
MSR127-2	9	9	8	9	5	5	6	5	2	7	4	4	4	0	9.0 0	0	0	0
MSW485-2	8	9	8	9	6	6	7	5	2	6	5	4	4	4	8.9 18	3 0	0	0
NC0349-3	8	9	8	6	6	5	6	6	2	6	8	8	8	0	9.0 56	6 0	0	0
NDTX0981648CB-13V	N 8	9	9	8	6	7	4	7	4	7	5	8	5	0	9.0 0	0	0	2
NY152	8	8	7	5	6	7	6	7	2	8	4	8	6	0	9.0 0	0	0	0
NY157	6	7	8	5	6	6	6	6	3	7	6	5	4	0	9.0 2	0	0	0
Snowden	9	9	7	7	6	5	4	5	3	6	6	8	6	0	9.0 0	0	0	0
TX09396-1W	9	9	9	9	6	6	5	5	4	6	8	8	3	0	9.0 0	0	0	0
W6822-3	7	9	9	7	6	6	5	6	2	7	7	8	7	0	9.0 0	0	0	0
W8822-1	8	9	8	8	5	5	5	6	3	8	7	8	7	0	9.0 0	0	0	0

Table 2. North Carolina. Plant vine type, disease and air pollution scores, maturity at ca. 3 weeks prior to harvest, and external and internal tuber attributes.

Plant Data:

Vine Type: 1 = decumbent – poor canopy, 2 = decumbent – fair canopy, 3 = decumbent – good canopy, 4 = spreading – poor canopy, 5 = spreading – fair canopy, 6 = spreading - good canopy, 7 = upright – poor canopy, 8 = upright – fair canopy, 9 = upright good canopy.

Vine Disease: 1 = very severe, 5 = moderate, 9 = none.

Vine Pollution: 1 = very severe, 5 = moderate, 9 = none.

Vine Maturity: 1= very early, 5 = mid-season, 9 = very late.

² <u>Tuber Data:</u>

Skin Color: 1 = purple, 2 = red, 3 = pink, 4 = dark brown, 5 = brown, 6 = tan to light brown, 7 = buff, 8 = white, 9 = cream.

Skin Texture: 1= partial russet, 2 = heavy russet, 3 = moderate russet, 4 = light russet, 5 = netted, 6 = slight net, 7 = moderately smooth, 8 = smooth, 9 = very smooth.

Cross Section: 1 = very flat, 3 = flat, 5 = intermediate to oval, 7 = mostly round, 9 = very round.

Skin Set: 1 = very poor, 5 = fair, 9 = excellent.

Shape: 1 = very round, 2 = mostly round, 3 = round to oblong, 4 = mostly oblong, 5 = oblong, 6 = oblong to long, 7 = mostly long, 8 = long, 9 = cylindrical.

Eye Depth: 1= very deep, 5 = medium, 9 = very shallow.

Size: 1 = small, 5 = medium, 9 = large.

Tuber Disease: 1 = very severe, 5 = moderate, 9 = none.

Overall Appearance: 1 = very poor, 5 = fair, 9 = excellent.

³ Internal Defects:

Percentage determined from 10 randomly selected potatoes /rep (40 total) in size classes 3 and 4. HN=heat necrosis; HNR=average heat necrosis rating (Rating Scale: 1= very severe to 9 = absent); HH=hollow heart; VR=vascular ring discoloration; BC=brown center; SR=soft rot

Table 3. North Carolina - UTZ Quality Foods Chip Data.

	Merit ¹	% De	fects	%Total	Specific		Chip Color ³	
Clone	Score	Internal	External	Defects	Gravity	Defect Descriptions	² Hunter Lab	
AF5040-8	1	1%	0%	1%	1.090	ID	67.9	
ATLANTIC	1	0%	0%	0%	1.096		68.5	
B2727-2	1	0%	0%	0%	1.089		69.5	
CO07070-10W	1	1%	1%	2%	1.097	GRN,ID	67.0	
CO07070-13W	1	0%	0%	0%	1.082		71.3	
LAMOKA	2	5%	0%	5%	1.073	ID(IHN?)	66.9	
MSR127-2	2	9%	0%	9%	1.087	VB	66.5	
MSW485-2	1	0%	0%	0%	1.071		66.8	
NC0349-3	3	13%	0%	13%	1.090	HH	66.0	
NDTX081648CB-13V	/ 1	2%	0%	2%	1.085	ID	65.2	
NY152	1	0%	0%	0%	1.089		69.3	
NY157	1	0%	0%	0%	1.075		68.1	
SNOWDEN	1	1%	0%	1%	1.087	ID	69.2	
TX09396-1W	1	1%	0%	1%	1.084	SEB	70.1	
W6822-3	1	0%	0%	0%	1.081		69.0	
W8822-1	1	0%	0%	0%	1.094		65.6	

¹ Merit Score:

1 = Outstanding; 2 = Keep; 3 = Marginal; 4 = Drop.

² Defect Descriptions:

BC = Brown Center; BR = Bruising; ED = External Discoloration; GRN = Greening; HH = Hollow Heart; ID = Internal Discoloration; IHN = Internal Heat Necrosis; SB = Stem End Browning; VB = Vascular Browning; WW = Wire Worm.

³ Chip Color:

Hunter Lab Scores - harvest date: 6/20/16, sample date: 6/22/16

AF5040-8: This clone was mid-maturing and had 99% stands with better than good vigor. Shapes were mostly oblong, size was medium large and overall appearance was better than fair. Marketable yields were 95% of Atlantic (historically 118%), gravity was 1.074 (historically 1.072) and chip color was excellent in the 24 to 48 hour and good in the 5 to 7 day chip tests. External defects included sunscald, misshapes, soft rot and skin blemishes due to Rhizoctonia.

Atlantic: Maturity for our main crop standard was mid-season, stands were 98% and vigor was better than fair. Shapes were round to oblong, size was medium large and overall appearance was fair. Gravity was 1.072 (historically 1.077) and chip color was excellent in the 24 to 48 hour and good in the 5 to 7 day chip tests. External defects included growth cracks, sunscald, misshapes, soft rot, common scab, and skin blemishes due to Rhizoctonia.

B2727-2: This clone was mid to late maturing and had 94% stands with better than fair plant vigor. Shapes were mostly round, size was slightly larger than medium and overall appearance was poor. Marketable yields were 54% of Atlantic (historically 53%), gravity was 1.072 (1.078 historically) and chip scores were excellent for both the 24 to 48 hour chip test and the 5 to 7 day chip test. External defects were sunscald, common scab, misshapes, growth cracks and skin blemishes due to Rhizoctonia.

CO07070-10W: This was the first year of testing of this clone in NC. Maturity for this clone was mid-season with 98% stands and better than fair plant vigor. Shapes were mostly round, size was small to medium and overall appearance was better than fair. Marketable yields were 72% of Atlantic, gravity was 1.079 and chip scores were good for both the 24 to 48 hour and the 5 to 7 day chip tests. External defects included soft rot, common scab and skin blemishes due to Rhizoctonia.

CO07070-13W: This was the first year of testing of this clone in NC. Maturity for this clone was mid season with 99% stands and better than fair plant vigor. Shapes were mostly round, size was medium and overall appearance was good. Marketable yields were 78% of Atlantic, gravity was 1.068 and chip scores were good for both the 24 to 48 hour and the 5 to 7 day chip tests. External defects included sunscald, growth cracks, misshapes, and infected lenticels.

Lamoka: Maturity for this clone was mid to late season with 97% stands and better than fair plant vigor. Shapes were oblong, size was slightly larger than medium and overall appearance was poor. Marketable yields were 60% of Atlantic (historically 91%), gravity was 1.067 (1.071 historically) and chip scores were excellent for both the 24 to 48 hour and the 5 to 7 day chip tests. External defects included growth cracks, soft rot, sunscald and skin blemishes due to Rhizoctonia.

MSR127-2: This was the first year of testing of this clone in NC. Maturity for this clone was late season, stands were 98% and vigor was better than good. Shapes were mostly round, size was slightly smaller than medium and overall appearance was poor. Marketable yields were 49% of Atlantic (historically 56%), gravity was 1.068 (historically 1.072) and chip scores were good for the 24 to 48 hour chip test and fair for the 5 to 7 day chip test. External defects were growth cracks, misshapes, and skin blemishes due to Rhizoctonia.

MSW485-2: This was the first year of testing of this clone in NC. Maturity for this clone was very late season, stands were 96% and vigor was good. Shapes were mostly round, size was medium and overall appearance was better than poor. Marketable yields were 53% of Atlantic, gravity was 1.070 and chip scores were good for the 24 to 48 hour chip test and fair 5 to 7 day chip test. External defects were sunscalds, growth cracks, misshapes, and skin blemishes due to Rhizoctonia.

NC0349-3: This clone was slightly later than mid-season and had 90% stands with fair vigor. Shapes were mostly round, size was large, and overall appearance was better than good. Marketable yields were 100% of Atlantic (historically 93%), gravity was 1.068 historically (1.071), and chip scores were good for the 24 to 48 hour and fair to good for the 5 to 7 day tests. External defects included misshapes, sunscald, soft rot, common scab and skin blemishes due to Rhizoctonia.

NDTX081648CB-13W: This was the first year of testing of this clone in NC. This clone was late maturing and had 98% stands with good vigor. Shapes were mostly oblong, size was medium, and overall appearance was fair.

Marketable yields were 81% of Atlantic, gravity was 1.072, and chip scores were excellent for the 24 to 48 hour and good for the 5 to 7 day tests. External defects included misshapes, secondary growth, sunscald, soft rot and skin blemishes due to Rhizoctonia.

NY152: This clone was mid-season and had 96% stands with better than fair vigor. Shapes were mostly round, size was slightly smaller than medium, and overall appearance was better than fair. Marketable yields were 96% of Atlantic (historically 149%), gravity was 1.070 historically (1.064), and chip scores were fair to good for the 24 to 48 hour and good for the 5 to 7 day tests. External defects included misshapes, sunscald, soft rot, infected lenticels, tight stolon attachments and skin blemishes due to Rhizoctonia.

NY157: This clone was mid-season and had 95% stands with better than fair vigor. Shapes were round to oblong, size was slightly larger than medium, and overall appearance was less than fair. Marketable yields were 79% of Atlantic (historically 91%), gravity was 1.067 historically (1.069), and chip scores were good for the 24 to 48 hour and 5 to 7 day tests. External defects included sunscald, growth cracks, infected lenticels and many skin blemishes due to Rhizoctonia.

Snowden: Our late season standard had a mid to late maturity with 96% stands and better than fair vigor. Shapes were round to oblong, size was slightly larger than medium and overall appearance was better than fair. Marketable yields were 98% of Atlantic (historically 101%), gravity was 1.074 (historically 1.074) and chip scores for the 24 to 48 hour and 5 to 7 day chip tests were excellent. External defects included sunscald, misshapes, soft rot, growth cracks and skin blemishes due to Rhizoctonia.

TX09396-1W: This was the first year of testing of this clone in NC. Maturity for this clone was very late and stands were 95% with fair vigor. Shapes were mostly oblong, size was large and overall appearance was poor. Marketable yields were 74% of Atlantic, gravity was 1.070 and chip scores were excellent for the 24 to 48 hour test and good for the 5 to 7 day chip test. External defects included misshapes, sunscald, growth cracks, infected lenticels and skin blemishes due to Rhizoctonia.

W6822-3: Maturity for this clone was mid to late and stands were 98% with good vigor. Shapes were mostly round, size was medium to large and overall appearance was good. Marketable yields were 107% of Atlantic (historically 103%), gravity was 1.076 (historically 1.074) and chip scores were excellent for the 24 to 48 hour test and good for the 5 to 7 day chip test. External defects included sunscald, common scab, soft rot and skin blemishes due to Rhizoctonia.

W8822-1 Maturity was late season, stands were 93% and vigor was better than fair. Shapes were round to oblong, size was medium to large and overall appearance was good. Marketable yields were 86% of Atlantic (historically 94%), gravity was 1.079 (historically 1.077) and chip scores were excellent in the 24 to 48 hour chip test and fair to good in the 5 to 7 day test. External defects soft rot, common scab, infected lenticels and skin blemishes due to Rhizoctonia.

NC 5 to 7 day chip

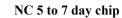
MSR127-2

Lamoka

MSR127-2

Lamoka

MSW485-2



NC0349-3

NDTX0981648CB-13W

NC 24 to 48 hr chip

NY157

Snowden

NY157

Snowden

TX09396-1W

W6822-3

NC 24 to 48 hr chip

NC 5 to 7 day chip

North Dakota Regional Trial

Potatoes USA – SNAC International 2016 Yield Trial Report

Local Trial Coordinator:

Darrin Haagenson USDA-ARS, East Grand Forks, MN 56721 Darrin.Haagenson@ars.usda.gov (701-219-4905)

Cooperating Grower:

Oberg Farms, Hoople, ND Jamie Oberg, 701-520-2328

Cooperating Chip Processor:

Barrel O' Fun Snack Foods, Perham, MN mikebormann@shearers.com

Trial Site Data:

Trial Location: (Hoople, ND)Planting Date: May 18, 2016;(12 inches in-row spacing, 36 inches between rows).Vine Kill Desiccant Applied: September 2, 2016Harvest Date: September 27, 2016

Growing Conditions:

Extremely difficult growing season with excessive rainfall and hail storm damage. Received over 20'' rainfall during growing season with hail events July and early August.

Experimental Design:

Experimental unit = 60 feet of row planting. Randomized complete block with four replicates. F-protected LSD (P < 0.05) was calculated for Total and US#1 yield mean comparisons

Fertilizer: Grower applied at planting: N-115; P-60; K-100; Zn-5

			% size	e distribut	ion ²		
Clone	Total Yield cwt/A	US #1 Yield ¹ cwt/A	<1 ⁷ / ₈ "	1 ⁷ / ₈ to 3 ¹ / ₂ "	Cull ³	Specific Gravity ⁴	Hunter ⁵
LAMOKA	249	168	32.1	65.5	2.5	1.098	67
SNOWDEN	296	161	44.9	53.4	1.7	1.087	61
AF4648-2	262	164	36.4	59.2	4.3	1.097	66
AF5040-8	226	147	34.4	63.3	2.4	1.096	65
B2727-2	179	98	44.0	53.0	3.0	1.092	64
CO07070-10W	148	41	67.2	25.6	7.2	1.094	62
MSR127-2	275	144	46.3	50.9	2.8	1.089	64
MSW485-2	379	226	39.8	58.3	1.9	1.100	64
NC0349-3	229	156	31.0	65.4	3.7	1.079	64
NDA081453CAB-2C	300	247	17.5	75.5	7.0	1.098	59
NDTX0981648CB-13W	286	132	52.4	44.6	3.0	1.092	57
NY152	344	199	41.3	56.8	1.9	1.095	71
NY157	276	175	35.9	60.3	3.9	1.087	62
TX09396-1W	247	195	21.0	73.5	5.5	1.093	64
W6822-3	273	166	38.7	57.6	3.8	1.095	65
W8822-1	283	158	43.3	55.0	1.7	1.095	67
Mean	266	161					
LSD (<i>P</i> ≤0.05)	30	26					
CV (%)	8.1	11.7					

Table 1. Yield, size distribution, specific gravity, and chip ratings. SNAC Chip Trial, North Dakota, 2016.

¹ US # 1 Yield is calculated as yield from tubers within 1 $^{7}/_{8}$ to 3 $^{1}/_{2}$ " diameter. ² 2016 ND trial did not possess any tubers with diameter exceeding $3^{1}/_{2}$ "

³ Cull includes any external mis-shaped or green tubers.
 ⁴ Specific gravity was determined by weight in air/water method.
 ⁵ Chip ratings were recorded with a HunterLab D25 NC.

Table 2. External and Internal Clone	Misshapen/	Greening	Vascular	Hollow	Bruise
	Growth Cracks	U	Discoloration	Heart	Rating ¹
LAMOKA	3.8	3.8	0.0	2.3	25.0
SNOWDEN	4.8	2.0	0.0	1.1	0.0
AF4648-2	4.4	3.5	0.0	2.5	6.7
AF5040-8	1.1	0.0	0.0	0.0	28.6
B2727-2	3.3	0.0	0.0	0.0	16.7
CO07070-10W	4.7	0.0	0.0	0.0	16.7
MSR127-2	8.2	0.0	0.0	0.0	46.7
MSW485-2	7.0	0.0	0.0	0.0	23.3
NC0349-3	4.7	2.3	1.8	37.8	10.0
NDA081453CAB-2C	8.8	0.0	0.0	0.0	13.3
NDTX0981648CB-13W	3.6	1.2	0.0	0.0	3.3
NY152	5.5	0.0	3.6	1.5	36.0
NY157	4.5	4.6	0.0	2.5	20.0
TX09396-1W	9.2	2.8	0.0	0.0	56.7
W6822-3	6.3	4.8	0.0	0.0	6.7
W8822-1	7.9	0.0	0.0	0.0	6.7

Table 2. External and Internal Defects (% Defect by weight). SNAC Chip Trial, North Dakota, 2016.

¹ After suberization for 4 wk at 55°F, 30 tubers were steam peeled at 100psi for 30 seconds and % tubers with bruising was recorded.

Oregon-Washington Regional Trial

Potatoes USA - SNAC International 2016 Yield Trial Report

Local Coordinator:

Name:	Vidyasagar Sathuvalli
Institution:	Oregon State University
City-State:	Hermiston, Oregon
Phone #:	(541) 567-6337 ext. 109
E-mail:	Vidyasagar@oregonstate.edu

Cooperating Grower:

Name:	Philip Mehlenbacher
Grower farm or research farm:	Mehlenbacher Farms
City-State:	Burbank, Washington
Phone #:	(509) 416-0123
E-mail:	mfi.farm@yahoo.com

Cooperating Processor or Lab Evaluator:

Name:
Company or Institution:
City-State:
Phone #:
E-mail:

Trial Data:

Trial location:	Burbank, WA
Planting date:	5/2/2016
Vine killing date:	9/18/2016
Harvest date:	10/17/2016

Storage Data:

Storage period:
Storage temperature:
Reconditioning: (time and temperature): N/A

Growing Conditions:

Experiment	tal Design:	
-	Bed width (inches):	34"
	Within row spacing (inches):	9.25"
	Data plot length (feet):	10'
	Replication #:	4
Cultural Pr	actices:	
	Fertilizer:	N 240 lb/acre; P; K 110 lb/acre
	Irrigation:	30"
	Rainfall:	3"
	Disease Control:	
		Endura
		Bravo
		Equus 720
		Cabrio
		Polyram
	Insect Control:	Wrangler
		Athena
		Perm Up
	Weed Control:	Gly Star Plus
		Matrix SG
		Pendimenthalin
	Vine Kill:	Mechanical
	Sprout Inhibitor:	

Potatoes USA - SNAC International

2016 Yield Trial Report

							Total	Marketable
S.No	. CLONE	Unders	Culls	13/4' to 21/2'	21/2" to 4'	over 4'	Yield	Yield
		CWT/Acre	CWT/Acre	CWT/Acre	CWT/Acre	CWT/Acre	CWT/Acre	CWT/Acre
1	AF4648-2	52	14	217	302	0	585	520
2	AF5040-8	28	16	139	312	0	495	450
3	B2727-2	14	5	151	401	0	570	551
4	CO07070-10W	56	9	268	233	0	565	501
6	MSR127-2	35	12	252	232	0	531	483
7	MSW485-2	104	12	375	249	0	740	624
8	NC0349-3	30	9	113	558	15	724	671
9	NDA081453CAB-2C	50	7	294	291	0	642	585
10	NDTX0981648CB-13W	47	16	291	558	0	912	849
11	TX09396-1W	33	10	169	372	46	629	541
12	NY152	90	14	372	256	0	731	628
13	NY157	45	22	209	338	7	621	547
14	W6822-3	55	15	231	434	0	734	665
15	W8822-1	83	11	296	249	0	640	545
16	ATLANTIC	22	49	130	523	61	785	653
17	LAMOKA	26	9	165	447	25	672	612
18	SNOWDEN	30	11	241	425	6	713	666

CLONE	Skin color	Flesh Color	Russ	Eye depth	Tuber Shape	Uniformity	Growth Crack	Scab
	1-12	Actual	1-9	1-5	Actual	1-5	1-5	1-5
AF4648-2	4.0	W	7.3	3.3	R	3.7	4.8	5.0
AF5040-8	4.0	L. Yellow	7.5	3.2	R-Ob-Flat	3.3	5.0	4.7
B2727-2	4.7	W	5.5	4.0	R-Ob	3.7	5.0	4.8
CO07070-10W	4.5	W	6.8	3.8	R-Ob	3.7	5.0	4.7
MSR127-2	4.7	W	5.5	3.3	R-C	3.3	4.8	5.0
MSW485-2	4.5	W	6.7	3.3	R-S. Conp	3.3	5.0	5.0
NC0349-3	4.5	W	5.5	3.2	R	3.5	5.0	5.0
NDA081453CAB-2C	4.0	W	7.7	3.5	R-Ob	3.5	5.0	4.7
NDTX0981648CB-13W	4.2	W	6.8	3.5	R-C	3.3	5.0	4.8
TX09396-1W	4.3	W	7.0	3.3	R-C	3.3	4.8	4.7
NY152	4.3	W	6.3	3.2	R	3.3	5.0	4.8
NY157	4.3	W	6.8	3.2	R	3.2	5.0	4.8
W6822-3	4.7	W	5.7	3.0	R-pty	3.5	5.0	4.7
W8822-1	5.5	L. Yellow	5.2	3.5	R	3.5	5.0	5.0
ATLANTIC	4.7	W	5.5	3.0	R-Ob	3.5	5.0	4.8
LAMOKA	4.5	W	6.8	3.8	R-C	3.3	5.0	5.0
SNOWDEN	4.8	W	5.0	3.0	R-C	3.2	5.0	5.0

CLONE	Shatterbruise	Skin set	Greening	Hollow Heart	Brown center	Internal Brown spot
	1-5	1-9	1-5	%	%	%
AF4648-2	4.2	6.5	4.7	0	0	0
AF5040-8	4.8	7.3	4.3	0	0	0
B2727-2	4.7	6.7	4.8	0	0	0
CO07070-10W	4.7	7.2	4.3	0	0	0
MSR127-2	4.2	7.0	5.0	0	0	0
MSW485-2	5.0	7.2	4.5	7	10	0
NC0349-3	4.7	7.3	4.3	10	7	0
NDA081453CAB-2C	4.5	7.0	4.8	0	0	3
NDTX0981648CB-13W	4.3	7.2	4.2	0	0	0
TX09396-1W	4.5	6.8	5.0	0	0	0
NY152	5.0	7.5	4.2	0	0	0
NY157	3.3	7.2	4.5	0	0	0
W6822-3	4.8	7.0	4.7	0	0	7
W8822-1	4.7	7.7	4.7	0	0	0
ATLANTIC	4.7	7.5	3.7	3	3	13
LAMOKA	4.8	6.5	4.2	0	0	0
SNOWDEN	5.0	6.8	4.8	0	7	0

CLONE	Black spot Bruise	Vascular Discoloration	Transculent End	Specific Gravity	Fry Color At Harvest
	%	%	%		1-5
AF4648-2	3	13	0	1.076	1.5
AF5040-8	17	7	0	1.081	1.5
B2727-2	13	3	0	1.079	1.5
CO07070-10W	17	7	0	1.088	1.5
MSR127-2	13	37	0	1.071	1.5
MSW485-2	3	27	0	1.084	1.8
NC0349-3	3	70	0	1.075	2.5
NDA081453CAB-2C	17	23	0	1.076	2.5
NDTX0981648CB-13W	3	23	0	1.074	1.8
TX09396-1W	7	57	0	1.078	2.2
NY152	10	13	0	1.077	1.3
NY157	23	3	0	1.073	1.3
W6822-3	17	3	0	1.084	1.2
W8822-1	3	7	0	1.076	1.7
ATLANTIC	30	0	0	1.082	2.0
LAMOKA	10	10	0	1.078	1.3
SNOWDEN	10	23	0	1.074	1.8

CLONE	Sugar Ends	Tubers/Plant	Emergence	Maturity
	1-5		%	% Green Left at Harvest
AF4648-2	1.3	10.1	100.0	11.7
AF5040-8	2.0	7.4	100.0	15.0
B2727-2	2.0	7.4	96.7	25.0
CO07070-10W	1.7	10.4	100.0	30.0
MSR127-2	2.0	9.3	96.7	31.7
MSW485-2	1.7	14.6	100.0	33.3
NC0349-3	3.0	8.9	96.7	30.0
NDA081453CAB-2C	2.7	10.8	100.0	33.3
NDTX0981648CB-13W	2.0	14.3	100.0	21.7
TX09396-1W	2.7	9.1	100.0	28.3
NY152	1.0	15.1	100.0	3.3
NY157	2.0	10.3	100.0	30.0
W6822-3	1.7	11.7	100.0	15.0
W8822-1	1.7	12.8	96.7	5.0
ATLANTIC	2.7	9.3	100.0	16.7
LAMOKA	1.7	9.1	96.7	18.3
SNOWDEN	1.3	11.1	100.0	20.0

Pennsylvania Regional Trial

2016 Potatoes USA – SNAC International Trial Yield Trial Report

Local Trial Coordinator:

Robert E. Leiby Pennsylvania Co-Operative Potato Growers, Inc. 3107 N. Front St., Harrisburg, PA 17110 610-657-9467 rleiby@pacooppotatoes.com

Cooperating Grower:

Bryan Bender Bender Potato Farms Chambersburg, PA 17201 717-658-3131 bryan@benderpotatoes.com

Cooperating Processor or Lab Evaluator:

Mitch Keeney Utz Quality Foods Hannover, PA Phone #:1-800-367-7629 mkeeney@utzsnacks.com

Trial Site Data:

Trial location:	Chambersburg, PA						
Soil type:	Hagerstown	Soil pH: 6.4	% Organic matter: 3.9				
Planting date:	05/11/2016						
Vine killing date:	09/13/2016						
Harvest date:	09/27/2016						

Growing Conditions: Excessive heat through most of growing season

Experimental Design:	
- Dad width (inchas).	

Bed width (inches):	36	Within row spacing (inches): 10.5
Data plot length (feet):	15	Replication #: 4

Cultural Practices:

Fertilizer:							
Before planting 23 lbs. N broadcast. At planting 98-102-185. At hilling 66-0-0							
Irrigation and Rainfall:	See Table						
Disease Control:	See Table						
Insect Control:	See Table						
Weed Control:	See Table						
Vine Kill:	Reglone 1.5 pt/A on 9/13/16						
Sprout Inhibitor:	N/A						

Variety/Line	Yield $(cwt/A)^1$		% US#1	% of Standard ²	% by size class ³			% PO ⁴		
v ariety/Enite	Total	>1 7/8"	/0 05/11	% Of Standard	2	3	4	5	70 1 0	
Snowden	496	452	91	100	24	50	17	0	4	
Lamoka	320	226	70	50	33	35	2	0	26	
AF4648-2	353	258	73	57	21	35	17	0	21	
AF5040-8	320	207	65	46	27	31	7	0	27	
B2727-2	361	324	90	72	33	45	11	0	3	
CO07070-10W	314	216	69	48	36	29	4	0	12	
MSR127-2	449	401	89	89	33	46	10	0	5	
MSW485-2	347	314	90	70	42	47	1	0	2	
NCO349-3	432	324	75	72	27	41	7	0	15	
NDA081453CAB-2C	409	350	86	78	30	40	16	0	8	
NDTX0981648CB-13W	370	286	77	63	40	34	3	0	9	
TX09396-1W	411	367	89	81	24	49	17	0	7	
NY152	377	296	78	66	49	27	1	0	7	
NY157	382	252	66	56	37	27	3	0	23	
W6822-3	386	253	65	56	28	32	5	0	26	
W8822-1	424	313	74	69	40	31	3	0	17	
LSD^5	81	78	10		9	9	6	0	9	

Total yield, greater than 17/8" yield, percent of standard, size distribution, percent pickouts for SFA Trial in PA, 2016

¹Yield Total = all yield including pickouts. US#1 Yield >1 7/8'' = categories 2, 3, 4 and 5 excluding pickouts.

²Percentage of the standard, Snowden, for >1 7/8" yield.

³Percentage of total yield according to size class. 2=1.875-2.5 in., 3=2.5-3.25 in., 4=3.25-4.0 in., 5=>4.0 in.

⁴Percentage of total that are pickouts.

⁵LSD indicates least significant difference (P = 0.05).

Variety/Line		Internal Defects ²						
v arrety/Enre	TA	С	TX	Sh	TED	TCS	HH	IB
Snowden	4	5	5	2	4	5	0	3
Lamoka	4	6	6	3	4	4	0	3
AF4648-2	4	7	7	2	5	5	0	0
AF5040-8	4	6	6	3	4	4	0	2
B2727-2	5	6	5	3	5	5	0	0
CO07070-10W	4	5	5	3	6	5	0	0
MSR127-2	5	5	5	2	6	5	0	0
MSW485-2	5	6	5	2	4	6	0	1
NCO349-3	5	6	5	2	6	5	3	0
NDA081453CAB-2C	5	6	6	2	4	5	0	27
NDTX0981648CB-13W	4	6	6	2	5	4	0	0
ГХ09396-1W	4	6	5	2	5	5	1	15
NY152	5	6	6	2	5	6	0	0
NY157	3	6	5	3	6	4	0	0
W6822-3	3	6	5	3	5	4	0	0
W8822-1	3	4	2	3	6	5	0	0

Tuber characteristics and internal for SFA Trial in PA, 2016

¹Tuber Characteristics: TA = tuber appearance: 1 = very poor, 5 = fair, 9 = excellent.

C = skin color: 1 = purple, 2 = red, 3 = pink, 4 = dark brown, 5 = brown, 6 = tan, 7 = buff, 8 = white, 9 = cream.

TX = skin texture: 1 = partial russet, 2 = heavy russet, 3 = mod. russet, 4 = light russet, 5 = netted, 6 = slight net, 7 = mod. smooth, 8 = smooth, 9 = very smooth.

Sh = tuber shape: 1 = round, 2 = mostly round, 3 = round-oblong, 4 = mostly oblong, 5 = oblong, 6 = oblong-long, 7 = mostly long, 8 = long, 9 = cylindrical.

TED = tuber eye depth: 1 = very deep, 5 = medium, 9 = very shallow. TCS = tuber cross section: 1 = very flat, 5 = intermediate, 9 = very round.

²Internal Defects: HH = hollow heart, IB = internal browning. Total number observed out of 40 tubers. 0 = not observed.

2016 PENNSYLVANIA SNAC VARIETY TRIAL CHIP SAMPLE RESULTS PROCESSOR: UTZ QUALITY FOODS

TRIAL LOCATION: BENDER FARMS - CHAMBERSBURG, FRANKLIN CO., PA.

Harvest	Date:	9/27/16
Sample	Date:	9/28/16

VARIETY	TRIAL	% EXTERNAL DEFECT	% INTERNAL DEFECT	% TOTAL DEFECT	SAMPLE WEIGHT (LBS)	SAMPLE WEIGHT (GRAMS)	HUNTER LAB SCORE	SNAC MERIT SCORE (1-4)	GRAV.	CHIP DEFECT DESCRIPTION/CHIP COMMENTS	RAW TUBER COMMENTS
AF4648-2	2016 PA SNAC	0%	25%	25%	1.20	544.8	70.0	4	1.077	PRIMARILY STEM-END BROWN, VASCULAR BROWN	SOME KNOBBY TUBERS
AF5040-8	2016 PA SNAC	0%	29%	29%	1.02	463.1	68.6	4	1.090	PRIMARILY DARK STEM-END BROWN, VASCULAR BROWN	LARGE TUBERS
B2727-2	2016 PA SNAC	8%	25%	33%	1.30	590.2	67.5	4	1.100	WIREWORM DARK STEM-END BROWN	SMOOTH SKIN
CO07070-10W	2016 PA SNAC	0%	15%	15%	1.20	544.8	69.3	3	1.090	STEM-END BROWN	
LAMOKA	2016 PA SNAC	0%	53%	53%	1.03	467.6	66.5	4	1.073	VERY DARK STEM-END BROWN	SOME "BLOCKY" TUBERS
MSR127-2	2016 PA SNAC	0%	20%	20%	1.05	476.7	66.9	4	1.078	PRIMARILY DARK STEM-END BROWN, VASCULAR BROWN	N
MSW485-2	2016 PA SNAC	0%	6%	6%	0.85	385.9	68.1	2	1.092	STEM-END BROWN, VASCULAR BROWN	LOTS OF STEMS HANGING ON TO TUBERS
NC0349-3	2016 PA SNAC	0%	12%	12%	0.80	363.2	69.1	3	1.076	STEM-END BROWN	
NDA081453CAB-2C	2016 PA SNAC	0%	34%	34%	0.60	272.4	66.7	4	1.089	STEM-END BROWN, INTERNAL DISCOLORATION	SMOOTH SKIN
NDTX081648CB-13W	2016 PA SNAC	0%	11%	11%	0.66	299.6	69.2	2	1.083	STEM-END BROWN	STEMS HANGING ON, "FLAT" TUBER SHAPE
NY152	2016 PA SNAC	0%	21%	21%	1.00	454.0	68.1	4	1.071	DARK STEM-END BROWN	VERY SMALL TUBER PROFILE
NY157	2016 PA SNAC	0%	35%	35%	0.95	431.3	70.0	4	1.090	PRIMARILY VERY DARK STEM-END BROWN	SOME SECONDARY GROWTH & SPROUTING
W6822-3	2016 PA SNAC	0%	47%	47%	1.00	454.0	66.9	4	1.088	STEM-END BROWN, INTERNAL DISCOLORATION	SOME SECONDARY GROWTH
W8822-1	2016 PA SNAC	0%	21%	21%	1.15	522.1	65.1	4	1.096	STEM-END BROWN, INTERNAL DISCOLORATION	TOUGH NETTED SKIN, KNOBBY TUBERS, SECONDARY GROWTH
SNOWDEN	2016 PA SNAC	2%	22%	24%	0.90	408.6	70.6	4	1.076	GREEN STEM-END BROWN,VASCULAR BROWN	

NaC Chip Trial 201	.6 PA Variety Harve	est Merit Score and Notes			
Variety	Harvest Merit Score	Observations	Pickout Defects recorded in orde of severity observed		
Snowden	1	Excellent performance	SB, SG, MS, RH		
Lamoka	3	Appearance is poor Most likeley due to heat stress	SB, SG, GC		
AF4648-2	2		SB, SG, CS, MS		
AF5040-8	4	Inconsistent shape Appearance poor Suspect pinkeye is present	SB, SP, MS		
B2727-2	2	Very few Pickouts Oval, Consistant shape	SB, CS		
CO07070-10W	3	Many creamer size tubers Size-most smalls and bigs 2 sets due to heat stress	SB, SG, CS		
MSR127-2	1	Consistant high yield Nice tubers Little heat damage Very few Pickouts	SB, GC, GC		
MSW485-2	1	Nice chip size Thick stolens attached Very few Pickouts Some BSR present	SB, SEDR, CS/RH		
NCO349-3	2	Not Bad Lots of greening	SB, SG, CS		
NDA081453CAB-2C	2	Suspect Pinkeye is present	SB, SG, MS, CS		
NDTX0981648CB-13W	2	Lots of small tubers tubers slightly flat Might need longer season or increase in row space	SB, TC, MS, SG		
TX09396-1W	2	Suspect Pinkeye is present Thick stolens attached Very Few Pickouts Minimal impact from heat	SB, SG, GC, MS		
NY152	2	Many small tubers Nice round shape Stood up well to heat stress	SB, MS		
NY157	3	Stressed by heat Some second growth tubers Some pointy tuber ends and skin cracking	SG, RH, GC, MS		
W6822-3	3	Varying tuber shapes Small and large tubers	SB, SG, MS, CS/RH		
W8822-1	3	Heavily russetted Some pointy tubers High # of tubers set	SG, bumpy, pointy		

	KEY to Pickout defects
SB	Sunburn
SG	Second Growth
RH	Rhizoctonia symptoms
MS	Misshapen
GC	Growth Cracks
CS/F	RH Common scab or rhizoct symptoms
SP	Sprouts
CS	Common scab
SED	R Stem End Dry Rot
тс	Tuber Chaining
нс	Hairline Cracks

SNaC Chip Tr	ial 2016 PA P	est Managem	ent Applications
Date	Туре	Product	Application
5/11/16	Insecticide	Platinum	In furrow at planting
5/20/16	Herbicide	Linex	1.5 pt/A
5/20/16	Herbicide	Medal	2 pt/A
5/20/16	Herbicide	Stealth	3 pt/A
5/20/16	Adjuvant	Li 700	1 pt/100 gal
6/22/16	Fungicide	Initiate	1.5 pt/A
6/22/16	Insecticide	Tombstone	2.8 oz/A
7/1/16	Fungicide	Roper	2 lb/A
7/12/16	Fungicide	Ridomil Gold	2.5 pt/A
7/25/16	Fungicide	Roper	2 lb/A
8/4/16	Fungicide	Initiate	1.75 pt/A
8/24/16	Fungicide	Zing	2 pt/A
8/29/16	Fungicide	Roper	2 lb/A
9/13/16	Fungicide	Initiate	1.5 pt/A
9/13/16	Desiccant	Reglone	1.5 pt/A

Date	Rain	Irrigation	Date	Rain	Irrigation	Date	Rain	Irrigation	Date	Rain	Irrigation	Date	Rain	Irrigation
5/11/16			6/1/16			7/1/16			8/1/16			9/1/16	0.3	
5/12/16			6/2/16			7/2/16			8/2/16	1.4		9/2/16		1.25
5/13/16			6/3/16	0.25		7/3/16			8/3/16			9/3/16		
5/14/16			6/4/16	0.4		7/4/16			8/4/16			9/4/16		
5/15/16	0.19		6/5/16			7/5/16	0.4		8/5/16			9/5/16		
5/16/16			6/6/16	0.6		7/6/16			8/6/16			9/6/16		0.5
5/17/16			6/7/16			7/7/16			8/7/16			9/7/16		
5/18/16	0.1		6/8/16			7/8/16			8/8/16			9/8/16	0.2	
5/19/16			6/9/16			7/9/16	0.2		8/9/16			9/9/16		
5/20/16			6/10/16			7/10/16			8/10/16			9/10/16	1.1	
5/21/16	0.3		6/11/16			7/11/16			8/11/16		1.00	9/11/16		
5/22/16	0.5		6/12/16			7/12/16			8/12/16			9/12/16		
5/23/16	0.2		6/13/16			7/13/16			8/13/16			9/13/16		
5/24/16	0.15		6/14/16			7/14/16	0.7		8/14/16	0.3		9/14/16		
5/25/16			6/15/16			7/15/16			8/15/16			9/15/16		
5/26/16			6/16/16			7/16/16			8/16/16			9/16/16		
5/27/16			6/17/16			7/17/16			8/17/16	0.5	1.25	9/17/16		
5/28/16	0.25		6/18/16			7/18/16			8/18/16			9/18/16		
5/29/16			6/19/16			7/19/16	0.4		8/19/16			9/19/16	0.2	
5/30/16			6/20/16			7/20/16			8/20/16			9/20/16		
5/31/16			6/21/16			7/21/16			8/21/16			9/21/16		
			6/22/16			7/22/16			8/22/16	0.2		9/22/16		
			6/23/16			7/23/16			8/23/16			9/23/16		
			6/24/16			7/24/16			8/24/16			9/24/16		
			6/25/16			7/25/16			8/25/16			9/25/16		
	<u> </u>		6/26/16			7/26/16	0.3		8/26/16			9/26/16		
			6/27/16			7/27/16			8/27/16			9/27/16	0.3	
			6/28/16	0.2		7/28/16			8/28/16					
	<u> </u>		6/29/16			7/29/16	0.5		8/29/16					
	<u> </u>		6/30/16			7/30/16			8/30/16					
						7/31/16	0.8		8/31/16					

SNaC Chip Trial 2016 PA Rain and Irrigation Record in Inches

<u>Wisconsin Regional Trial</u> Potatoes USA-SNAC International -Chip Variety Trials-

-December, 2016-

Felix M Navarro, Research Manager, **Troy Fishler**, Hancock ARS, Storage Research Manager, Hancock University of Wisconsin-Madison Agricultural Research Station Phone: 715-249-5961; E-mail: fmnavarro@wisc.edu College of Agricultural and Life Sciences, University of Wisconsin-Madison

Trial Site

Hancock Agricultural Research Station, N3909 CTH V, Hancock, WI 54943

Technical Support

Amber Gotch, Assistant Researcher, Storage Research Facility Samuel Perez- Storage Research Facility help Joe Nord- Summer Intern, Hancock ARS Sonia Castillo, Hancock Research Station Paul Systma, Ag. Project Supervisor and Staff of the Hancock Agricultural Research Station, Hancock Agricultural Research Station

Trial Procedure

Seed was received from trial cooperators during April, 2016 and held in a locker in the Wisconsin Potato and Vegetable Storage Research Facility at 38°F until cutting. Seed was moved to 55°F to warm a week prior to cutting. Cutting was done by hand the week before planting, with special attention paid to cutting uniform-sized, blocky seed pieces ranging from 2 to 2½ oz in weight. Cut seed was placed in well-ventilated plastic crates and held at 55°F for to promote drying and suberizing prior to planting. Planting took place on May 6, 2016 manually. Varieties were planted in two rows of 30 feet in length. Rows were spaced 36 in. Seed pieces were placed 12 in. apart within each row for a target plant density of 14,520 plants/acre. Plots were vine-killed on September 12 and 19, and harvested using a custom-built Gallenberg plot harvester on September 29.

Plots were maintained according to standard production practices recommended by the University of Wisconsin-Madison (See Appendix). Irrigation schedules and application rates were based on in-hill soil moisture monitors and daily field observations helped by a checkbook method following the WISP2012 Irrigation Management software.

Precipitation 27.25 Irrigation 15.68

Soil type: Plainfield loamy sand

The 2016 growing season in Wisconsin was characterized by moderate temperatures and relatively wet, especially in the second half of the crop cycle. Several large rain episodes (1-3.6 inches) occurred in August and September (Fig. 1).

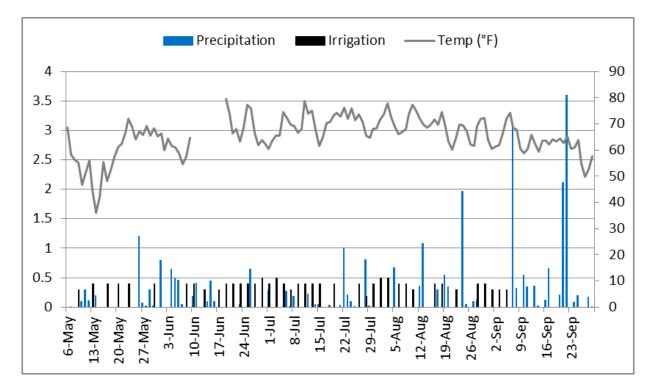
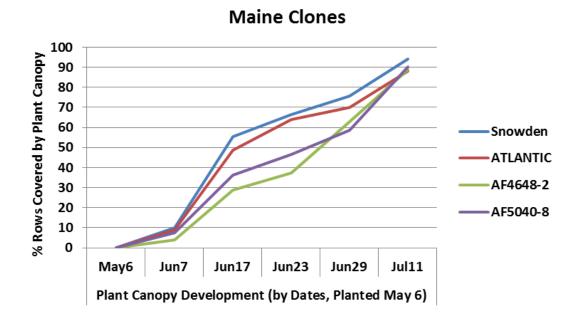


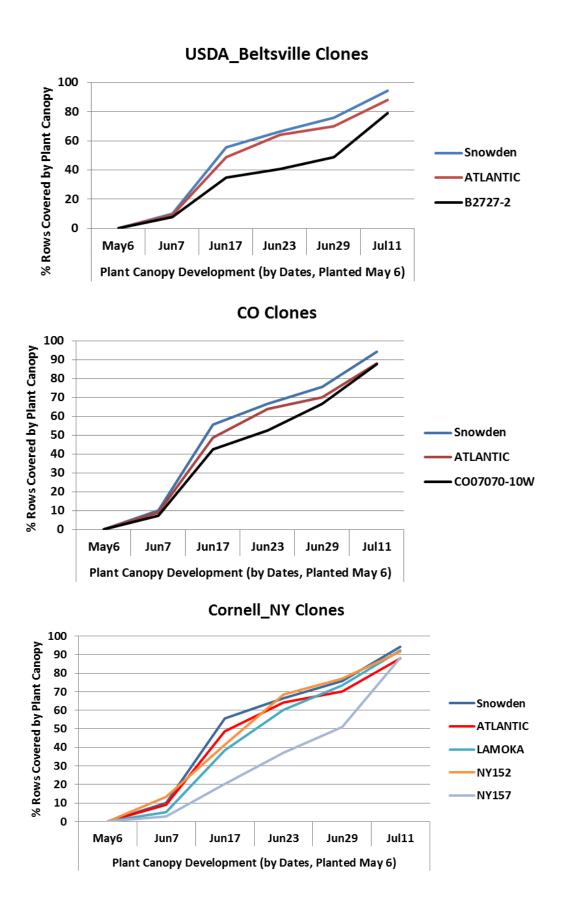
Fig. 1. Rainfall (inches, bar data) and average daily temperature (°F, line data) from May 6 to September 29, 2016. Planting data occurred on May 6 and harvest on September 29.

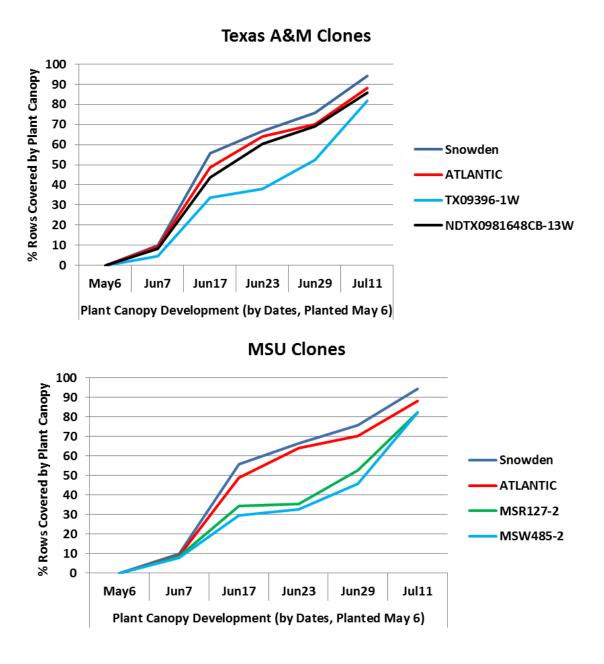
Plant Development Traits

This trial was planted for an intended plant density of 14,520 plants/a. The number of plants and stems were evaluated late June and plant/acre and stems per plants are reported in Table 1; similarly tubers per plants are reported as well. Plant canopy development was evaluated through July 11. Data on canopy development is also provided in Table 1 and also in Fig. 2.

Yield Data, Tuber Quality and Storage Evaluation


Tubers were graded and sized using a custom-built Gallenberg grader and AgRay X-ray sizer. Specific gravity measurements were taken for each variety using a Weltech PW-2050 Dry Matter Assessment System; this uses a weight in air/weight in water method. Specific gravity, total yield (cwt/a), yield (cwt/a) of undersize (tubers with less than 1.875" diameter), oversize (tubers with more than 3.25" diameter) and culls are presented in **Table 2. Fig. 3** shows distributions of tuber diameters for each one of the clones. Internal defects are shown in **Table 3**.


Storage profile is being pursued at the Hancock Agricultural Research Station Storage Research Facility from 45°F and 48°F. Potatoes are initially placed in a locker with controlled temperature and humidity. Data from the first processing evaluation (48°F) is reported in **Table 4 and Fig. 4**; we plan to collect data until June of 2017 and will be reported in June, at the end of the storage season.


_		Tubers		Plant	t Canopy D	evelopmen	t (by Dates	Planted M	av 6)
Clone	Plant/a	/pt	Stems/pt	May6	Jun7	Jun17	Jun23	Jun29	Jul11
Snowden	12580	15.4	2.88	0	10.1	55.6	66.6	75.7	94.2
ATLANTIC	12580	<u>11.4</u>	2.08	0	9.1	48.8	64.1	70.1	88.0
AF4648-2	<u>7449</u>	<u>10.1</u>	1.80	0	4.1	29.0	37.4	62.8	88.8
AF5040-8	<u>8103</u>	12.3	2.38	0	7.5	36.4	46.5	58.7	90.1
B2727-2	<u>5260</u>	<u>13.5</u>	2.23	0	7.7	34.8	40.5	48.9	79.1
CO07070-10W	<u>9313</u>	15.8	2.60	0	7.2	42.6	52.7	66.5	87.9
LAMOKA	11733	<u>9.0</u>	1.98	0	5.0	38.5	60.3	73.6	92.3
MSR127-2	<u>5441</u>	16.9	2.55	0	8.4	34.3	35.5	52.8	82.2
MSW485-2	<u>6893</u>	<u>19.1</u>	1.93	0	8.0	29.7	32.6	45.7	82.3
NC0349-3	<u>10523</u>	<u>11.2</u>	2.28	0	8.4	45.3	60.8	67.9	93.1
NDA081453CAB-2C	<u>3626</u>	<u>11.9</u>	1.68	0	4.0	21.4	30.9	49.1	80.5
NDTX0981648CB-13W	<u>10039</u>	14.1	2.88	0	8.3	43.6	60.5	68.9	85.9
NY152	12096	16.1	2.80	0	13.4	41.3	68.5	77.1	91.5
NY157	<u>8769</u>	15.4	1.68	0	2.7	20.1	37.1	51.1	88.4
TX09396-1W	<u>9132</u>	<u>9.2</u>	1.58	0	4.4	33.8	38.1	52.5	81.7
W6822-3	<u>10462</u>	12.7	2.23	0	9.3	37.0	56.3	64.5	88.6
W8822-1	11249	<u>13.8</u>	2.28	0	7.6	36.7	50.0	54.9	83.5
Standard Error	905	0.8							

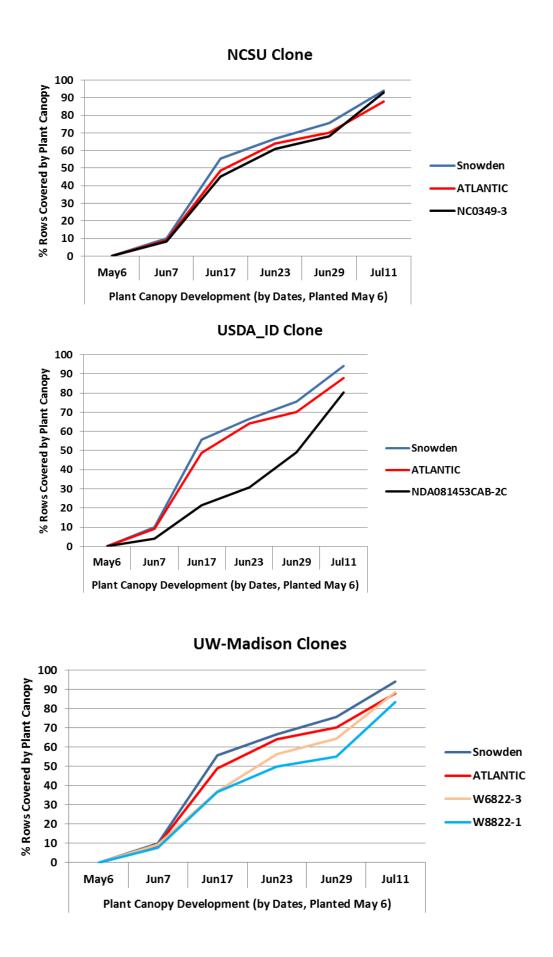

Table 1 Plant and tuber development traits

Fig. 2 Plant Canopy Evaluations

		Tubers	< 11/8"	Tubers 2	1‰ to 3¼"	Tubers	5 > 31/4"	Cu	lls	Tuber	Weight 9	% by Cull	Types
Clone	Total	cwt/a	(%)	cwt/a	(%)	cwt/a	(%)	cwt/a	(%)	Green	Growth Cracks	Mis- shapen	Other
Snowden	612	34	5.5	545	89.1	12.3	2.0	20.3	3.3	86.9	5.7	5.7	1.7
AF4648-2	419	9	2.1	<u>308</u>	73.4	<u>51.5</u>	12.3	<u>51.3</u>	12.2	77.0	10.8	10.2	1.9
AF5040-8	<u>412</u>	13	3.3	<u>340</u>	82.6	21.2	5.1	37.0	9.0	64.0	6.7	26.7	2.7
ATLANTIC	554	15	2.7	475	85.8	28.9	5.2	34.8	6.3	86.6	10.4	1.3	1.7
B2727-2	<u>362</u>	8	2.2	<u>286</u>	79.0	11.1	3.1	<u>56.8</u>	15.7	68.6	<u>26.2</u>	2.4	2.8
CO07070-10W	<u>384</u>	<u>49</u>	12.9	<u>303</u>	79.0	4.1	1.1	26.8	7.0	87.7	7.7	2.9	1.7
LAMOKA	<u>413</u>	12	2.9	<u>350</u>	84.8	13.3	3.2	37.8	9.1	89.0	5.8	3.5	1.7
MSR127-2	<u>438</u>	10	2.4	<u>384</u>	87.7	23.1	5.3	20.4	4.7	65.8	<u>22.2</u>	7.2	4.8
MSW485-2	<u>521</u>	21	4.0	<u>471</u>	90.4	12.2	2.3	16.6	3.2	86.3	11.1	0.9	1.7
NC0349-3	539	9	1.7	<u>448</u>	83.2	26.6	4.9	<u>55.0</u>	10.2	90.2	5.7	2.3	1.8
NDA081453CAB-2C	<u>280</u>	6	2.3	<u>204</u>	72.8	<u>38.4</u>	13.7	31.6	11.3	82.9	12.0	1.1	3.9
NDTX0981648CB-13W	<u>445</u>	30	6.7	<u>379</u>	85.2	6.1	1.4	29.8	6.7	84.8	4.2	7.8	3.3
NY152	595	38	6.4	497	83.6	5.0	0.8	<u>54.7</u>	9.2	93.3	3.5	1.1	2.1
NY157	<u>481</u>	25	5.2	<u>408</u>	84.8	13.8	2.9	34.3	7.1	85.0	8.3	4.1	2.6
TX09396-1W	<u>435</u>	7	1.5	<u>319</u>	73.4	<u>70.8</u>	16.3	37.9	8.7	73.5	4.1	16.9	5.4
W6822-3	<u>503</u>	20	4.0	<u>407</u>	80.9	10.9	2.2	<u>64.5</u>	12.8	87.0	4.6	6.1	2.3
W8822-1	547	23	4.2	494	90.2	14.5	2.7	15.7	2.9	72.2	6.8	19.2	1.7
Standard Error	44	4.4		36		8.0		14.4		9.6	8.6	5.7	

Table 2 Total tuber yield, yield of undersize tuber (<1⁷/₈" inches in diameter), yield of tubers 1⁷/₈" to 3¹/₄" in diameter, oversize (> 3¹/₄" inches) and culls, POTATOES USA-SNAC Intl clones, Hancock ARS, WI.

Note: Culled tubers include tubers that are green, growth cracks, misshapen, knobby, rotten, etc. Large amounts of rain in August and September favored high incidence of green potatoes. Underlined values indicate performance statistically worse than the control cultivar Snowden.

Boldfaced values indicate performance statistically better than the control cultivar Snowden.

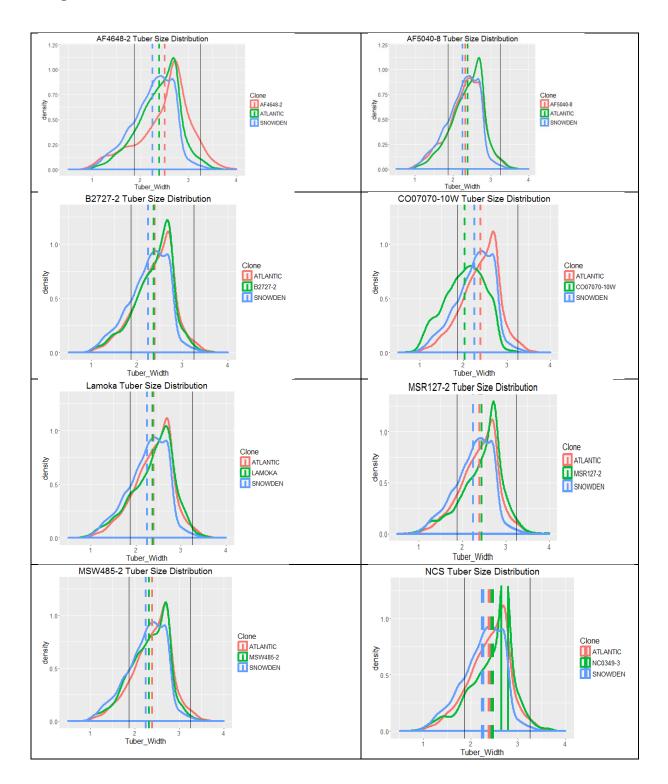
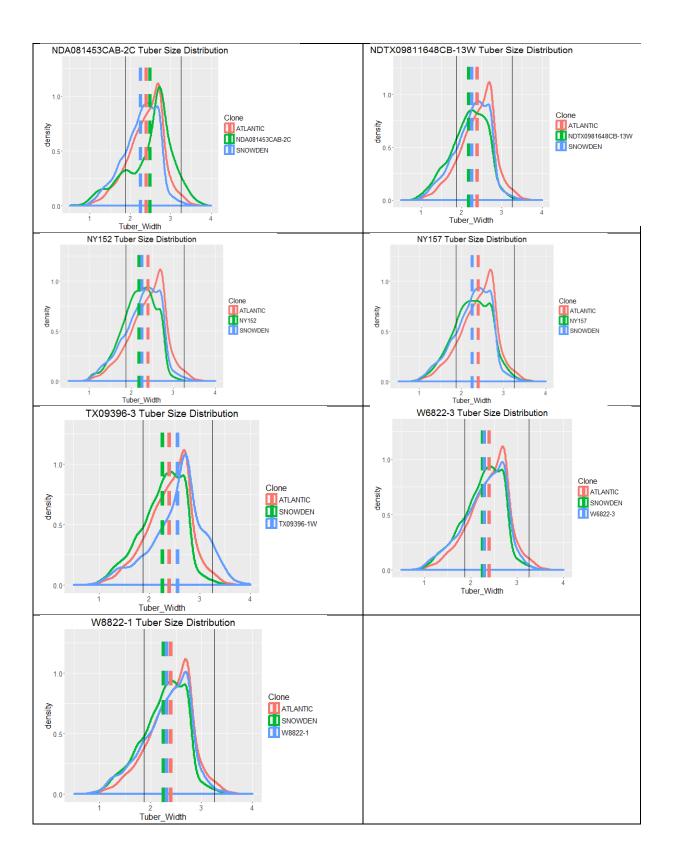



Fig. 3 Tuber Size Distribution of SNAC Intl.

Clone	% All Tubers	% Internal [Defects (Ray	w Product) or	n 30 tubers	
CIONE	Hollow Heart	BC	IBS	VD	BSB (Raw)	
Snowden	3.6	0.0	0.9	15.0	3.3	
AF4648-2	2.7	<u>3.2</u>	<u>13.8</u>	15.2	3.3	
AF5040-8	3.4	1.7	0.0	20.0	10.0	
ATLANTIC	4.0	0.0	<u>12.5</u>	8.3	3.3	
B2727-2	3.0	0.0	0.9	6.7	8.3	
CO07070-10W	3.2	0.0	0.0	10.0	5.0	
LAMOKA	2.1	0.0	0.0	<u>46.7</u>	3.3	
MSR127-2	3.3	0.0	<u>14.2</u>	8.4	1.7	
MSW485-2	3.5	<u>5.0</u>	0.0	26.7	0.0	
NC0349-3	<u>6.8</u>	1.7	0.0	<u>66.7</u>	3.3	
NDA081453CAB-2C	2.8	<u>3.2</u>	<u>23.8</u>	21.9	0.0	
NDTX0981648CB-13W	3.0	0.0	0.0	10.0	15.0	
NY152	2.8	0.0	0.0	13.3	0.0	
NY157	3.1	0.0	0.0	23.3	0.0	
TX09396-1W	2.5	0.0	<u>10.4</u>	11.9	10.0	
W6822-3	2.8	0.0	4.2	<u>46.7</u>	1.7	
W8822-1	3.0	0.0	0.8	21.7	5.0	
Standard Error		1.1	4.2	11.0		

Table 3 Percentage of internal defects on POTATOES USA-SNAC INTL14 clones, Hancock ARS, WI.

Note: Underlined values indicate performance statistically worse than the control cultivar Snowden. Highlighted values indicate performance statistically better than the control cultivar Snowden.

Table 4 Specific Gravity, Tuber sugars, fry processing traits, and stem end discoloration of on POTATOES USA-SNAC INTL16 clones, Hancock ARS, WI, Storage Facility, ARS. November 21, 2016.

	Sp	ecific Grav	ity, Sugars	and F	ry Data		St	em End	Discol	oration	Processed	Chips
Clone	Specific Gravity	Sucrose mg/g FW	Glucose mg/g FW	L	а	b	0	1	2	3	4	5
SNOWDEN	1.077	0.336	0.060	64.3	1.6	26.5	83.3	6.9	9.7	0.0	0.0	0.0
AF4648-2	1.070	0.639	0.167	60.8	2.6	24.8	79.2	6.9	13.9	0.0	0.0	0.0
AF5040-8	1.087	0.653	0.093	61.1	3.1	26.6	69.4	16.7	13.9	0.0	0.0	0.0
ATLANTIC	1.080	0.640	0.138	57.7	5.1	24.9	69.4	0.0	13.9	9.7	6.9	0.0
B2727-2	1.081	0.398	0.096	63.1	2.3	25.9	76.4	6.9	15.3	1.4	0.0	0.0
CO07070-10W	1.089	0.668	0.173	61.5	3.3	26.2	81.9	11.1	6.9	0.0	0.0	0.0
LAMOKA	1.076	0.522	0.057	65.1	1.8	25.8	81.9	4.2	8.3	5.6	0.0	0.0
MSR127-2	1.080	0.298	0.098	61.0	2.5	24.4	83.3	1.4	13.9	1.4	0.0	0.0
MSW485-2	1.083	0.393	0.088	61.3	2.3	24.4	75.0	1.4	11.1	12.5	0.0	0.0
NC0349-3	1.064	0.459	0.083	65.8	1.6	25.8	73.6	8.3	18.1	0.0	0.0	0.0
NDA081453CAB-2C	1.080	1.052	0.363	55.7	5.7	23.5	62.5	2.8	18.1	16.7	0.0	0.0
NDTX0981648CB-13W	1.077	0.360	0.498	59.3	6.8	23.9	68.1	2.8	18.1	11.1	0.0	0.0
NY152	1.072	0.427	0.024	64.8	0.9	25.9	66.7	4.2	20.8	8.3	0.0	0.0
NY157	1.074	0.473	0.092	61.0	3.7	25.3	68.1	5.6	19.4	6.9	0.0	0.0
TX09396-1W	1.079	0.586	0.113	59.0	3.5	23.9	81.9	1.4	5.6	11.1	0.0	0.0
W6822-3	1.081	0.519	0.027	64.9	0.8	25.8	80.6	15.3	4.2	0.0	0.0	0.0
W8822-1	1.081	0.445	0.092	61.2	2.3	26.2	86.1	0.0	8.3	5.6	0.0	0.0

ATLANTIC AF4648-2 AF5040-8 B2727-2 LAMOKA MSR127-2 MSW485-2 CO07070-10W NC0349-3 NDA081453CAB-2C NDTX0981648CB-NY152 13W NY157 W8822-1 TX09396-3W W6822-3 **SNOWDEN**

Fig. 4 Chips processed on November 21, 2016, SNAC International Trial 2016

In Wisconsin, the 2016 growing season was characterized by moderate air temperatures throughout the growing season and abundant rains in August (Fig. 1). August rains contributed to tuber greening in several varieties (Table 1). Snowden and Atlantic yield were about normal for the Hancock ARS.

For a second year now we were able to grade potatoes using an X-ray system to assess weight, width and hollow heart. Distributions and data reported for these variables use information from all graded tubers. Tuber size profile curves and defects such as hollow heart take into consideration data from all potatoes graded.

In several tables, estimates of tuber traits are given including also the standard error for the difference is included. Performance of each clone is compared to that of Snowden and this is expressed in each table as follows: clones with similar font to Snowden are not statistically significant compared to Snowden; boldfaced-italics clone performance indicates better performance than Snowden and underlined values indicate worse performance than Snowden, all using a Tukey HSD value at a 5% error rate.

Processing evaluations from 55°F occurred on November 21 and presented in Table 3 and Figure 3; important variations on specific gravity, sugar and frying profile were observed and are discussed in the clone summaries.

Clone Summary:

Seed quantity was fine and seed quality was considered good at the time of planting, but several clones could not establish themselves well.

Snowden, the control cultivar had a total yield of 612 cwt/a and the yield of tubers of <1⁷/₈" -3¹/₄" in diameter was 545 cwt/a. Snowden specific gravity was 1.083 which is its typical value in years of medium to high gravity in WI. Snowden hollow heart and other internal characteristics were acceptable. Strong canopy development as typical of other years.

Atlantic: As typical of this variety, early plant canopy development was fast and close to Snowden performance, yield was high, specific gravity was 1.080.

AF4648-2: Slower plant development compared to Atlantic and Snowden partially due to low density achieved. This clone was affected by tuber greening; it had 12.3% tuber culls and 77% of culled tubers were due to greening. Tuber size profile was most similar to Atlantic, although AF4648-2 had tubers with width larger than Atlantic on average. Internal brown spot was observed as a potential limitation to internal quality. Specific gravity was -0.007 compared to Snowden. Good fry color up to November 21.

AF5040-8: Slower plant development compared to Atlantic and Snowden, partially due to low density achieved. Total yield at 412cwt/a was significantly lower than Snowden. Tuber size profile is very similar to Snowden. High specific gravity. . Good fry color up to November 21.

B2727-2: Very poor plant establishment at 5,260 plants/a compared to 12,580 for Atlantic and Snowden. Plants were slow to reach 80% of canopy cover. Low tuber yield. Tuber size profile was most similar to Atlantic. Good gravity

CO07070-10W: Fast plant development similar to Snowden. Low tuber yield. Large tubers, larger than Atlantic's. High gravity.

Lamoka: Low tuber set at 9 compared to Snowden (15.4). Fast plant development close to that observed for Atlantic. Lower A size yield compared to Snowden. Tuber size profile was very similar to Atlantic. Specific gravity very close to Snowden.

MSR127-2: Very poor plant establishment at 5,441 plants/a compared to 12,580 for Atlantic and Snowden. Slow to cover the rows with its canopy, partially due to low plant density. Lower A size yield compared to Snowden. Tuber size profile was very similar to Atlantic. IBS observed in cut potatoes. Good specific gravity, 1.080, similar to the Atlantic standard. A significant percentage of growth cracks was observed.

MSW485-2: Very poor plant establishment at 6,893 plants/a compared to 12,580 for Atlantic and Snowden. Very slow at covering the rows, partially due to low density achieved. Very high number of tubers/plant.

NC0349-3: Fast initial plant development similar to Atlantic. Tuber size profile was very similar to Atlantic. High hollow heart percent at 6.8 and high vascular discoloration. Lowest specific gravity in the trial (1.064).

NDA081453CAB-2C: Very poor plant establishment at 3,626 plants/a compared to 12,580 for Atlantic and Snowden. Low yield, most likely affected by inability to establish a higher plant density. Maybe susceptible to internal brown spot. Gravity similar to Atlantic.

NDTX0981648CB-13W: Fast plant development similar to Atlantic. Yield lower than Snowden. Tuber size profile most similar to Snowden. Gravity similar to Atlantic. High glucose value and fry chips color deteriorating as of November 21.

NY152: Able to establish plant populations close what Snowden and Atlantic achieved. Fast canopy development similar to Snowden and Atlantic. High yield, similar to what was observed of Snowden. Tuber size profile most similar to Snowden's. Specific gravity was -0.005 compared to Snowden. **NY157**: Slow to develop plant canopy compared to Snowden and Atlantic. Moderate yield compared to Snowden. Tuber size profile most similar to Snowden's. Specific gravity was -0.003 compared to Snowden.

TX09396:=Slow to develop plant canopy compared to Snowden and Atlantic. Moderate yield compared to Snowden. A large portion of 16% of yield that was culled it was due to greening and misshapen tubers. Large tubers with size profile larger than that of Atlantic. Gravity similar to Snowden. Fry products starting to show some color.

W6822-3: Plant canopy development close to Atlantic. Yield was lower than Snowden. Susceptible to greening of tubers under the conditions of the trial. Tuber size profile closer to Snowden. Vascular discoloration of raw potatoes observed. Gravity similar to Atlantic.

W8822-3: Plant canopy somewhat lower than what was observed for Atlantic. Yield similar to Atlantic and no significantly different to Snowden. Tuber size profile intermediate between Snowden and Atlantic. Attractive round smooth tubers. Gravity similar to Atlantic.

Date	Equipment	Products	Dosage	Units
9/29/2016	Harvest: Potato Digger, Blue			
-, -,		Diquat E	1.5	pints/acre
9/19/2016	Vine-kill 2: Spray Coupe	Non Ionic Surfactant 80/20	1	pints/acre
9/15/2016	Spray Coupe	Manzate Pro-Stick	1.5	lb(pound)/acre
-,,		Non Ionic Surfactant 80/20	1	pints/acre
9/12/2016	Vine-kill 1:Spray Coupe	Diquat E	1.5	pints/acre
0/0/2016	Fungicide Application:	Super Tin 80WP	3	dryoz./acre
9/8/2016	Spray Coupe	Manzate Pro-Stick	1.5	lb(pound)/acre
9/1/2016	Fungicide Application:Spray C.	Manzate Pro-Stick	1.5	lb(pound)/acre
0/26/2016	Fungicide Application:	Forum	6	fluidoz/acre
8/26/2016	Spray Coupe	Bravo Weather Stik	1.5	pints/acre
8/19/2016	Fungicide Application:Spray C.	Bravo Weather Stik	1.5	pints/acre
		Bravo Weather Stik	1.5	pints/acre
8/11/2016	Fungicide Application:	Revus Top	7	fluidoz/acre
	Spray Coupe	Non Ionic Surfactant 80/20	1	pints/acre
8/4/2016	Fungicide Application:Spray Coupe	Bravo Weather Stik	1.5	pints/acre
7/20/2010	Fungicide Application:	Bravo Weather Stik	1.5	pints/acre
7/29/2016	Spray Coupe	Headline	12	fluidoz/acre
		MSO	24	fluidoz/acre
7/22/2016	Insecticide + Fungicide Application:Spray Coupe	Bravo Weather Stik	1.5	pints/acre
	Application.spidy coupe	Coragen	5	fluidoz/acre
7/14/2016	Fungicide Application:	Bravo Weather Stik	1.5	pints/acre
//14/2010	Spray Coupe	Tanos	8	dryoz./acre
7/8/2016	Airflow Fertilizer Application	34-0-0 Ammonium Nitrate	150	lb(pound)/acre
7/8/2016	Fungicide Application:Spray C.	Bravo Weather Stik	1.5	pints/acre
6/24/2016	Fungicide Application:	Non Ionic Surfactant 80/20	1	pints/acre
0/24/2010	Spray Coupe	Agri-Mek SC	3.5	fluidoz/acre
6/16/2016	Herbicide Application:	Non Ionic Surfactant 80/20	1	pints/acre
0/10/2010	Spray Coupe	Matrix	1.5	dryoz./acre
6/13/2016	Airflow Fertilizer Applicator	34-0-0 Ammonium Nitrate	350	lb(pound)/acre
6/9/2016	Fungicide Application:	Crop Oil Conc.	1	pints/acre
0/9/2010	Spray Coupe	Revus	8	fluidoz/acre
5/23/2016	Herbicide Application:	Metribuzin 75DF	0.5	lb(pound)/acre
5/25/2010	Spray Coupe	Parallel	1	pints/acre
5/23/2016	Fertilizing and Hilling: Hiller/Sidedresser	21-0-0-24S Ammonium Sulfate	360	lb(pound)/acre
5/6/2016	Hilling, Row Closing			
5/6/2016	Manual Planting, fertilizer applic: Iron Age	6-30-22-4S+micros with Platinum	550	lb(pound)/acre
5/5/2016	Soil Finisher, Brillion			
4/12/2016	Airflow Fertilizer Applicator	0-0-0-17S-21Ca, Calcium Sulfate	500	lb(pound)/acre
,, _0 _0		0-0-60 Potash	450	lb(pound)/acre

Appendix: Agronomic Management and Pest and Disease Control